Barlow Solar Energy Centre
Natural Heritage Assessment
and Environmental Impact
Study

FINAL DRAFT REPORT

Prepared for:
Barlow Energy Centre Limited
Partnership
53 Jarvis Street, Suite 300
Toronto, Ontario M5C 2H2

Prepared by:
Stantec Consulting Ltd.
Suite 1-70 Southgate Drive
Guelph, ON N1G 4P5

File No. 160960879
January 17, 2017
This document entitled Barlow Solar Energy Centre Natural Heritage Assessment and Environmental Impact Study was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Barlow Energy Centre Limited Partnership (the "Client"). In connection with the Client’s application for a Renewable Energy Approval, this document may be reviewed and used by the following entities in the normal course of their review and approval process: (a) the MOECC; (b) the MNRF; (c) the MTCS; and (d) the Environmental Review Tribunal. Except as set forth in (a) through (d) above, any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec’s professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others, unless otherwise stated therein. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by ________________________________
(signature)
Anna Corrigan, B.Sc. (Hons)
Ecologist

Prepared by ________________________________
(signature)
Melissa Straus, M.Sc.
Terrestrial Ecologist

Reviewed by ________________________________
(signature)
Nicole Kopysh, BES
Project Manager/ Ecologist
Table of Contents

ABBREVIATIONS ... I

1.0 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.2 PROJECT LOCATION AND ZONE OF INVESTIGATION ... 1

1.3 REPORT REQUIREMENTS .. 1

1.4 GUIDANCE DOCUMENTS ... 1

2.0 RECORDS REVIEW .. 2

2.1 METHODS ... 2

2.2 RESULTS ... 2

2.2.1 Wetlands ... 2

2.2.2 Woodlands ... 2

2.2.3 Wildlife Habitat .. 2

2.2.4 Areas of Natural and Scientific Interest (ANSIs) ... 2

2.2.5 Provincial Parks and Conservation Reserves ... 2

2.2.6 Summary of Natural Features and Boundaries Identified .. 2

3.0 SITE INVESTIGATIONS .. 3

3.1 METHODS .. 3

3.1.1 Alternative Site Investigation Methods .. 3

3.1.2 Vegetation Community and Vascular Plants Assessment .. 3

3.1.3 Wetland Confirmation and Delineation .. 3

3.1.4 Woodlands ... 3

3.1.5 Wildlife and Wildlife Habitat ... 3

3.2 RESULTS ... 3

3.2.1 Wetlands ... 3

3.2.2 Woodlands ... 3

3.2.3 Wildlife and Wildlife Habitat ... 3

3.3 SITE INVESTIGATION RESULTS SUMMARY ... 3

4.0 EVALUATION OF SIGNIFICANCE .. 4

4.1 METHODS .. 4

4.1.1 Wetlands ... 4

4.1.2 Woodlands ... 4

4.1.3 Wildlife and Wildlife Habitat ... 4

4.2 RESULTS ... 4

4.2.1 Wetlands ... 4

4.2.2 Woodlands ... 4

4.2.3 Wildlife and Wildlife Habitat ... 4

4.3 SUMMARY .. 4

4.4 QUALIFICATIONS .. 4
5.0 ENVIRONMENTAL IMPACT STUDY ...5.1
5.1 SUMMARY OF PROJECT COMPONENTS ...5.1
 5.1.1 Solar Panels ...5.1
 5.1.2 Access Roads ..5.2
 5.1.3 Inverters and Step-Up Transformers ..5.3
 5.1.4 Substation ...5.3
 5.1.5 Operations and Maintenance Storage Area5.4
 5.1.6 Perimeter Fence ..5.4
 5.1.7 Construction Staging and Temporary Construction Areas5.5
5.2 POTENTIAL IMPACTS OF THE PROJECT ...5.5
 5.2.1 Significant Wetlands ..5.6
 5.2.2 Significant Woodlands ..5.7
 5.2.3 Generalized Candidate Significant Wildlife Habitat5.8
5.3 BEST MANAGEMENT PRACTICES AND OTHER GENERAL CONSTRUCTION
 MITIGATION ..5.9
 5.3.1 Dewatering ...5.9
5.4 MONITORING PLAN ..5.10
5.5 SUMMARY OF IMPACTS AND MITIGATION ...5.10

6.0 REFERENCES ...6.1

LIST OF TABLES
Table 2.1: Summary of Natural Features Identified in Records Review for the
 Project Location and ZOI ...2.5
Table 4.1: Summary of Significant Natural Features Carried Forward to EIS4.5

LIST OF APPENDICES
APPENDIX A: FIGURES
Figure 1: Project Location
Figure 2: Records Review
Figure 3: Ecological Land Classification
Figure 4: Natural Features
Figure 5: Significant Natural Features

APPENDIX B: TABLES
Table B.1: Significant Wildlife Habitat Assessment
Table B.2: Barlow Solar Energy Centre Site Investigation Record
Table B.3: Ecological Land Classification (ELC) Vegetation Types
Table B.4: Site Investigation Results: Wetlands
Table B.5: Site Investigation Results: Woodlands
Table B.6: Wetland Characteristics and Ecological Functions Assessment for
 Wetlands >0.5 ha within the Zone of Investigation
Table B.7: Evaluation of Significance: Woodlands
Table B.8: Monitoring Plan

Stantec
APPENDIX C: BACKGROUND WILDLIFE LIST
APPENDIX D: FIELD FORMS
APPENDIX E: CURRICULUM VITAE
Abbreviations

ac
ANSI
DEM
ELC
EEMP
EIS
EOS
GIS
ha
Hydro One
km
LIO
LRP
LUF
MOECC
MNRF/MNR
MW
NHA
NHAG
NHIC
O. Reg.

alternating current
Area of Natural and Scientific Interest
Digital Elevation Model
Ecological Land Classification
Environmental Effects Monitoring Plan
Environmental Impact Study
Evaluation of Significance
Geographic Information System
hectare
Hydro One Networks Inc.
kilometre
Land Information Ontario
Large Renewable Procurement
Adjacent and Watershed Land Use
Ministry of Environment and Climate Change
Ministry of Natural Resources and Forestry
megawatt
Natural Heritage Assessment
Natural Heritage Assessment Guide
Natural Heritage Information Centre
Ontario Regulation
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWES</td>
<td>Ontario Wetland Evaluation System</td>
</tr>
<tr>
<td>PV</td>
<td>photovoltaic</td>
</tr>
<tr>
<td>PCC</td>
<td>Point of Common Coupling</td>
</tr>
<tr>
<td>PSW</td>
<td>Provincially Significant Wetland</td>
</tr>
<tr>
<td>PUT</td>
<td>Pollutant Uptake Factor</td>
</tr>
<tr>
<td>RRCA</td>
<td>Raisin Region Conservation Authority</td>
</tr>
<tr>
<td>REA</td>
<td>Renewable Energy Approval</td>
</tr>
<tr>
<td>SARA</td>
<td>Species at Risk Act</td>
</tr>
<tr>
<td>SWH</td>
<td>Significant Wildlife Habitat</td>
</tr>
<tr>
<td>SWHTG</td>
<td>Significant Wildlife Habitat Technical Guide</td>
</tr>
<tr>
<td>SWHMiST</td>
<td>Significant Wildlife Habitat Mitigation Support Tool</td>
</tr>
<tr>
<td>TNPI</td>
<td>Trans-Northern Pipelines Inc.</td>
</tr>
<tr>
<td>WCEFA</td>
<td>Wetland Characteristics and Ecological Functions Assessment</td>
</tr>
<tr>
<td>WIF</td>
<td>Watershed Improvement Factor</td>
</tr>
<tr>
<td>ZOI</td>
<td>Zone of Investigation</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 BACKGROUND

Barlow Energy Centre Limited Partnership (the Proponent), is proposing the development of a 10 megawatt alternating current (MWac) solar energy generating facility, known as the Barlow Solar Energy Centre (the Project) approximately 10 kilometres (km) west of the city centre of Cornwall in the Township of South Stormont, United Counties of Stormont, Dundas and Glengarry, Ontario. The Point of Common Coupling will be located adjacent to the Project Location, within the road allowance of Cornwall Centre Road, in the City of Cornwall, Ontario. The Project will require a Renewable Energy Approval (REA) as per Ontario Regulation (O. Reg.) 359/09 - Renewable Energy Approvals under Part V.0.1 of the Act, under the Environmental Protection Act (MOECC 2009, amended 2016).

The Proponent is proposing to develop, construct and operate the Project on approximately 38 hectares (ha; 94 acres) of land in response to the Government of Ontario’s Large Renewable Procurement (LRP) initiative to promote the development of renewable electricity in the province.

The Proponent has retained Stantec Consulting Ltd. (Stantec) to prepare a REA application, as required under O. Reg. 359/09. The proposed solar PV distribution grid connected system would be considered a Class 3 Solar Facility under O. Reg. 359/09, s. 4.

1.2 PROJECT LOCATION AND ZONE OF INVESTIGATION

The Project will be located on parts of lots 20 and 21, Concession 4 on privately-owned land, leased for a period of 20 or more years. The Project Location is bounded to the south by Cornwall Centre Road, and to the west, north and east by undeveloped woodlands and scrubland. A Trans-Northern Pipeline Inc. (TNPI) pipeline and Hydro One Networks Inc. (Hydro One) transmission line bisect the Project. A map showing the location of the Project is provided in Figure 1, Appendix A.

The term “Project Location” is defined by O. Reg. 359/09 as:

“a part of land and all or part of any building or structure in, on or over which a person is engaging in or proposes to engage in the project and any air space in which a person is engaging in or proposes to engage in the project” (MOECC 2009, amended 2016).

For the purposes of this Project, the “Project Location” includes the footprint of all facility components (i.e., buildable area), plus any temporary work or storage locations. The boundary of the Project Location is used for defining setback and site investigation distances according to O. Reg. 359/09. All construction vehicles, personnel, and installation activities would be confined...
to this designated area. Installation activities related to the connection line at the Point of Common Coupling (PCC) would be contained within the boundaries of the municipal road allowance.

As required by O. Reg. 359/09, a “Zone of Investigation” (ZOI) has been identified around the outer limits of the Project Location. The ZOI was measured 50 m from the Project Location, as described above. The Project Location and ZOI are shown on Figures 2, Appendix A.

1.3 REPORT REQUIREMENTS

This Natural Heritage Assessment and Environmental Impact Study (NHA/EIS) is intended to satisfy the requirements outlined within O. Reg. 359/09 (s. 24 through 28, 37, and 38) and is to be submitted as a component of the REA application. The Project Location and its ZOI are not located within the Niagara Escarpment Plan, the Oak Ridges Moraine Conservation Plan Area, the Lake Simcoe Protection Plan or the Protected Countryside of the Greenbelt Plan.

A NHA is required to determine whether any of the following features exist in and/or within the Project Location and the ZOI:

- Wetlands
- Coastal wetlands
- Life Science Areas of Natural and Scientific Interest (ANSIs)
- Earth Science ANSIs
- Woodlands
- Wildlife habitat
- Provincial Parks and Conservation Reserves

This report identifies the existence and boundaries of all natural features in and within the Project Location and ZOI based on a review of background records and field investigations. As natural features are located within the ZOI, this report provides an evaluation of significance (EOS) for each identified feature based on either an existing Ministry of Natural Resources and Forestry (MNRF) designation of the feature, or by using evaluation criteria or procedures established or accepted by the MNRF.

An EIS is required to identify and assess any negative environmental effects and identify mitigation measures for significant natural features within the Project Location or ZOI as per O. Reg. 359/09, s.38. The results of the NHA/EIS must be consolidated into a report and submitted to the MNRF for confirmation in advance of submission of the REA application to the Ministry of Environment and Climate Change (MOECC). Written confirmation from the MNRF, as well as any written comments received from the MNRF, must be submitted along with the NHA and EIS to the MOECC as part of the REA application.
1.4 GUIDANCE DOCUMENTS

During the preparation of this report, several guidance documents were referenced to ensure compliance with current standards and agency requirements. These documents include:

- Significant Wildlife Habitat Technical Guide (SWHTG) (MNR, 2000); including, the Criteria Schedule for EcoRegion 6E (MNRF, 2015)
- Significant Wildlife Habitat Mitigation Support Tool (SWHMIST) (MNRF, 2014)
- Ontario Wetland Evaluation System (OWES), Southern Manual (MNR, 2002)
BARLOW SOLAR ENERGY CENTRE
NATURAL HERITAGE ASSESSMENT AND ENVIRONMENTAL IMPACT STUDY

Records Review
January 17, 2017

2.0 RECORDS REVIEW

2.1 METHODS

This Records Review report was prepared in accordance with O. Reg. 359/09, s. 25 (3). The Project is located in southern Ontario; therefore there are no planning boards, local roads boards, or Local Services boards applicable to the Records Review.

Background data was collected and reviewed to identify natural features located within the Project Location or within the ZOI. Documents reviewed and agencies contacted as part of the Records Review included but were not limited to:

Crown in Right of Canada

Provincial
- Ministry of Natural Resources and Forestry. Requested background information from the MNRF Kemptville District Information Request Services (September, 2016).
- Ministry of Natural Resources and Forestry. 2016. Land Information Ontario (LIO) digital mapping of natural heritage features.

Conservation Authority
- Raisin Region Conservation Authority (RRCA). Requested mapping showing regulated areas within the Project location and ZOI.

Local and Upper-Tier Municipalities / Municipal Planning Authority

Other Data Sources
The information received from each source and the way it was used to identify natural features, provincial parks or conservation reserves that exist in or within the Project Location and ZOI are detailed below (Section 2.2).

2.2 RESULTS

The results of the Records Review were used to determine whether natural features are within the Project Location and/or ZOI. The location and boundaries of natural features documented within the ZOI are described in the following sections and shown on Figure 2, Appendix A. No natural features were identified within the Project Location.

2.2.1 Wetlands

Key information sources reviewed to identify wetlands include consultation with the MNRF Kemptville District, Land Information Ontario (LIO) mapping and the Natural Heritage Information Centre (NHIC), the City of Cornwall Official Plan (2004), and the United Counties of Stormont, Dundas and Glengarry Official Plan (2009). This review identified four wetlands within the ZOI as shown on Figure 2, Appendix A. No wetlands were identified within the Project Location.

Provincially Significant Wetlands
No Provincially Significant Wetlands (PSW) were identified within the Project Location or ZOI.

Other/ Locally Significant Wetlands
No Locally Significant Wetlands were identified within the Project Location or ZOI.

Unevaluated Wetlands
Four unevaluated wetlands were identified within the ZOI during the Records Review to the north and west of the Project Location, and south of Cornwall Centre Road, as shown on Figure 2, Appendix A (LIO, 2016). None were identified within the Project Location.

2.2.2 Woodlands

Woodlands are defined as treed areas, woodlots or forested areas other than cultivated fruit, nut orchards, or Christmas tree plantations that are located east and south of the Canadian Shield (MNR, 2012).

The Project is located within the Upper St. Lawrence section of the Great Lakes – St. Lawrence Forest Region (Rowe, 1972), within the subregion known as Ecoregion 6E-12 (Cornwall). This region is dominated by sugar maple and beech with various associates of basswood, white ash, yellow birch, red maple, bur and red oak, basswood and large-tooth aspen. Other locally occurring tree species include white oak, red ash, grey birch, rock elm, blue-beech and bitternut hickory. In the contemporary landscape, white elm dominates while butternut, eastern cottonwood, and slippery elm are sporadically distributed in river valleys. On fertile, fine-textured
lowland soils, pure stand of black maple and silver maple have been reported. Hardwood swamp types dominated with black ash are frequent on poorly-drained depressions (Rowe, 1972).

A review of aerial photos and the City of Cornwall Official Plan (2004) and the United Counties of Stormont, Dundas and Glengarry Official Plan (2009) indicate that the Project area is located in a rural area that is predominantly agricultural, with portions of wooded areas. The United Counties of Stormont, Dundas and Glengarry Official Plan (2009) states that 33% of the land base consists of wooded areas.

LIO mapping identifies no woodlands within the Project Location and nine (9) within the ZOI (LIO, 2016).

All woodlands identified through the records review are shown in Figure 2, Appendix A. The occurrence, classification (as per Ecological Land Classification (ELC)) and boundaries of these features as well as any additional woodland have been verified during the Site Investigation.

2.2.3 Wildlife Habitat

Wildlife habitat is defined as an area where plants, animals and other organisms live, including areas where species concentrate at a vulnerable point in their life cycle and that are important to migratory and non-migratory species (O. Reg. 359/09). The Significant Wildlife Habitat (SWH) Ecoregion 6E Criterion Schedule (MNRF, 2015) groups wildlife habitat into four categories:

- seasonal concentration areas of animals
- rare vegetation communities or specialized habitat for wildlife
- habitat for species of conservation concern
- animal movement corridors.

Unlike other natural features such as woodlands, ANSIs or wetlands, known occurrence and location information for many components of SWH are often not available on a site-specific basis. As a result, background information that is available for the greater local landscape has been compiled and is used to identify known SWH, and inform the potential for candidate SWH (Table B1, Appendix B). Using this information, a preliminary assessment was conducted to identify if wildlife habitat features are present within the Project Location or ZOI to determine whether the area contains candidate SWH. Site-specific information gathered during the Site Investigation is required to determine whether the habitat to support SWH is present within the Project Location or ZOI.

Wildlife records from within the range of the Project were compiled from available literature and resources including the Atlas of the Mammals of Ontario (Dobbyn, 1994), Ontario Reptile and Amphibian Atlas (Ontario Nature, 2016), Ontario Breeding Bird Atlas (Cadman et al. 2007), the
NHIC database (2016), background information from the Information Request Services (MNRF, 2016) and LIO mapping of known wildlife features (LIO, 2016).

Based on a review of background resources, 99 species of birds, 20 species of mammals, 10 species of amphibians, and six species of reptiles are known to occur within the range of the Project (Appendix C). Exact locations of species occurrences are not available from these atlases and instead, are recorded within 10 x 10 km squares. The potential for species to be present within the Project Location will be limited by the habitat suitability and availability supported by the Project’s local landscape. Therefore, the identified species recorded from these databases may not occur within the Project Location or ZOI.

Known wildlife habitat components identified through the records review are detailed in Table B1, Appendix B. A summary of the record review results is provided in Table 2.1.

The occurrence and boundaries of candidate SWH within the Project Location and the ZOI were identified during the Site Investigation and outlined in Section 3.2.

2.2.4 Areas of Natural and Scientific Interest (ANSIs)

MNRF identifies two types of ANSIs: Life Science and Earth Science. Life Science ANSIs are significant representative areas of Ontario’s biodiversity and natural landscapes, while Earth Science ANSIs are geological in nature and consist of significant representative examples of bedrock, fossils and landforms in Ontario.

The background review did not identify any Life Science or Earth Science ANSIs within the Project Location or ZOI and has not be carried forward to Site Investigations (LIO, 2016; NHIC, 2015; MNRF, 2016).

2.2.5 Provincial Parks and Conservation Reserves

There were no provincial parks or conservation reserves identified within the ZOI or Project Locations through the Records Review (LIO, 2016; NHIC, 2015; Ontario Parks, 2016).

2.2.6 Summary of Natural Features and Boundaries Identified

A summary of known natural features identified through the Records Review as occurring in the the Project Location and/or ZOI are provided in Table 2.1, below. No known features were identified within the Project Location.
Table 2.1: Summary of Natural Features Identified in Records Review for the Project Location and ZOI

<table>
<thead>
<tr>
<th>Feature</th>
<th>Carried Forward to Site Investigation (Y/N)</th>
<th>Known Recorded Information in the ZOI</th>
<th>Known Recorded Information within the Project Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>Y</td>
<td>4 unevaluated wetlands</td>
<td>No records</td>
</tr>
<tr>
<td>Woodlands</td>
<td>Y</td>
<td>9 wooded areas</td>
<td>No records</td>
</tr>
<tr>
<td>Wildlife Habitat</td>
<td>Y</td>
<td>No records</td>
<td>No records</td>
</tr>
<tr>
<td>Areas of Natural and Scientific Interest (ANSIs):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Life Science ANSI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Earth Science ANSI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified provincial plan areas</td>
<td>N</td>
<td>No records</td>
<td>No records</td>
</tr>
<tr>
<td>Provincial Parks and Conservation Reserves</td>
<td>N</td>
<td>No records</td>
<td>No records</td>
</tr>
</tbody>
</table>
3.0 SITE INVESTIGATIONS

Site investigations were conducted to confirm the presence and boundaries of natural features within the Project Location and associated ZOI following guidance and protocols as recommended in MNRF’s NHAG (2012). Determinations made based on the site investigations include:

- whether the results of the record review are correct or require correction, and identifying any required corrections
- whether any additional natural features exist, other than those that were identified in the records review
- the boundaries of any natural feature located within 50 m of the Project Location.

3.1 METHODS

Site investigations detailed the current conditions within the Project Location and ZOI. Survey dates, times, duration, field personnel and weather conditions are presented in Table B2, Appendix B with field notes provided in Appendix D. Qualifications for personnel involved in conducting the site investigation are provided in Appendix E. Land access was available for all land parcels where Project components are proposed, and all areas within the Project Location and ZOI were traversed on foot during site investigations as further described below.

All site investigations were carried out in accordance with O. Reg. 359/09 and the NHAG (MNR, 2012), using guidance provided in the SWHTG (MNRF, 2000) and the SWH Ecoregion 6E Criterion Schedule (MNRF, 2015).

3.1.1 Alternative Site Investigation Methods

Site investigations were conducted for all areas within the ZOI except where private property was adjacent to Project Location and access was not granted. Stantec and the Proponent worked collaboratively to identify land access requirements and contact landowners for the purpose of site investigations. Sites were not accessed in cases where permission was denied or a response was not received. In these cases, it was necessary to conduct Alternative Site Investigations, as described in Part IV, Section 26 of O. Reg. 359/09.

Alternative Site Investigation methods were used when assessing natural features south of Cornwall Centre Road. This area was assessed from the side of the road where access was available. Vegetation communities in these natural areas were identified to the lowest level possible using the ELC for Southern Ontario.
3.1.2 Vegetation Community and Vascular Plants Assessment

ELC of the Project Location and the ZOI was conducted by Stantec in 2016.

Vegetation communities were delineated on aerial photographs and confirmed in the field on June 7, 2016. Vascular plant species lists were recorded separately for each community. Community characterizations were based on the ELC system (Lee et al., 2008). English colloquial names and scientific binominals of plant species generally follow Newmaster et al. (1998).

3.1.3 Wetland Confirmation and Delineation

Wetlands are defined as features that are swamp, marsh, bog, or fen that are seasonally or permanently covered by shallow water or have the water table close to the surface, and have hydric soils and vegetation dominated by hydrophytic or water-tolerant plants (MNR, 2012). Wetlands were identified during ELC surveys and were further evaluated using OWES.

Wetland boundaries were identified based primarily on ELC mapping. All wetland and fresh-moist upland communities (ELC criteria) were used to identify known and potential wetland communities. Mapping generally included ELC wetland communities, but was further delineated using OWES. Delineations were completed by a certified OWES evaluator (Appendix E).

3.1.4 Woodlands

Woodlands include treed areas, woodlots, or forested areas, other than cultivated fruit or nut orchards or plantations established for the purpose of producing Christmas trees (MNR, 2012).

The limits of all woodlands that occur, or partially occur, within the ZOI were delineated through aerial photo interpretation and confirmed during site investigations. Woodlands were delineated using the driplines of the trees. Information regarding woodland size, ecological function and uncommon characteristics was collected during the ELC survey and through GIS analysis. Treed areas identified during vegetation surveys were compared to the definition of woodlands provided in O. Reg. 359/09 to delineate the limits of woodlands. In accordance to the NHAG (MNRF, 2012), bisecting openings of 20 m or less were not considered to divide woodlands into two.

3.1.5 Wildlife and Wildlife Habitat

Wildlife habitat assessment surveys were undertaken on June 7, 2016 in conjunction with ELC survey. Presence or absence of wildlife habitat features as identified within the MNRF’s SWH Criteria Schedules (2015) was recorded along with a description of the attributes and location of each feature identified. These details are described in Table B1, Appendix B.
Methods used to identify the presence of each candidate wildlife habitat type are provided in Table B1, Appendix B. Survey information (i.e., survey times, weather conditions and field personnel) is provided in Table B2, Appendix B.

In accordance with Appendix D of the NHAG, most wildlife habitat types that are identified within 50 m of the Project Location of a Solar Project can be considered “Generalized Candidate SWH” and treated as significant without requiring species-specific surveys to confirm significance (MNR, 2012). This is because the type of Project components used in Solar Projects does not have an operational impact on this type of habitat. These habitats have been assessed for the potential to occur within 50 m of the Project Location based on landscape and geography (specifically the ELC assessment). Those that have the potential to occur based on this assessment are treated as Generalized Candidate SWH, as detailed in Table B1, Appendix B. However, some SWH are an exception to this and need to be individually identified or delineated, including:

- Seasonal Concentration Areas
 - Colonial Birds (ground) - Terns
 - Colonial Birds (trees and shrubs) - Herons
 - Reptile Hibernacula
- Animal Movement Corridors
 - Amphibian Movement Corridors
 - Deer Movement Corridors

All candidate wildlife habitats occurring at the Project Location have been individually identified, delineated and confirmed.

3.2 RESULTS

The Project Location is located completely within active agriculture. At the time of the Site Investigation, the Project Location was planted as corn. The ZOI is comprised primarily of natural vegetation consisting of deciduous forest, woodland, thicket, and swamp, as described in Sections 3.2.1 to 3.2.2. The ZOI, Project Location, and ELC delineations are shown on Figure 3, Appendix A.

Field notes for the site investigations are provided in Appendix D.

A list of all natural features confirmed during the site investigation in the Project Location and ZOI is provided in Table B1, Appendix B, and natural features and their boundaries are shown on Figure 4, Appendix A.

Each vegetation community within the ZOI and Project Location is described in Table B3, Appendix B and shown on Figure 3, Appendix A.
No rare vegetation communities were identified within the Project Location and ZOI.

3.2.1 Wetlands

The site investigation confirmed the presence of the four wetlands within the ZOI identified during the Records Review. However, the boundaries for the wetlands to the northwest and west of the Project Location were connected based on the site investigation outcomes. As a result, these two wetlands in the records review became the same feature. Additionally, two other wetlands were observed north of the Project Location during the site investigation that was not previously identified in the records review, and is shown on Figure 4, Appendix A (i.e., total of 5 wetlands). Wetlands within the ZOI are typically deciduous lowlands and swamps with swamp thickets. The wetland features were adjacent (0 m) or further from the Project Location. No wetlands were located within the Project Location.

The presence of wetlands and boundaries present during the site investigation are shown on Figure 4, Appendix A.

Descriptions of these features are provided in Table B4, Appendix B.

An EOS is required for all wetlands identified through the site investigation.

3.2.2 Woodlands

A total of 5 woodland features were identified within the ZOI during the site investigation, as shown on Figure 4 (Appendix A). No additional woodlands not previously identified in the Records Review were located during the site investigation. However, woodland boundaries were corrected based on the site investigation and guidance from the NHAG (MNR, 2012) for determining woodland boundaries. The woodland features were adjacent (0 m) or further from the Project Location. No woodlands were located within the Project Location.

Table B5, Appendix B includes a description of the attributes, composition and function for each of the woodlands identified as occurring in the ZOI during the site investigation.

An EOS is required for all woodlands identified through the site investigation.

3.2.3 Wildlife and Wildlife Habitat

The results of the site investigation for wildlife habitat are detailed in Table B1, Appendix B.

Candidate SWH features that were required to be individually identified, delineated, and could not be classified as Generalized Candidate SWH were not identified at the Project Location or ZOI. No candidate SWH features were identified at the Project Location.
In accordance with Appendix D of the NHAG (MNR, 2012), wildlife habitats within the ZOI that are not required to be identified or delineated individually but have the potential to occur based on landscape and geography (i.e. ELC assessment) are considered to be existing, and are identified in Table B1, Appendix B (see section 3.1.5). These habitats are grouped and are referred to as “Generalized Candidate SWH”. The location and boundaries of Generalized Candidate SWH is shown on Figure 4, Appendix A. The Generalized Candidate SWH features were adjacent (0 m) or further from the Project Location. No Generalized Candidate SWH were located within the Project Location.

3.3 SITE INVESTIGATION RESULTS SUMMARY

No natural features were identified at the Project Location. The following features were identified within the Project Location and/or ZOI, and are carried forward to the EOS:

- Wetlands (we01, we02, we03, we04, we05)
- Woodlands (wo01, wo02, wo03, wo04, wo05)
- Generalized Candidate SWH
4.0 EVALUATION OF SIGNIFICANCE

Natural heritage information collected from the Records Review and Site Investigation were analyzed to determine the significance of existing natural heritage features. For all natural features existing in or within the ZOI and/or the Project Location, a determination was made of whether the natural feature is provincially significant, significant, not provincially significant or not significant.

Natural heritage information collected from the Project Location and ZOI was evaluated to confirm potential significance. The provincial status of vegetation communities was based on data obtained from the database of the Natural Heritage Information Centre (NHIC, 2015).

The following sections describe the natural features present within the ZOI and/or the Project Location that require an EOS.

4.1 METHODS

4.1.1 Wetlands

A method for Wetland Characteristics and Ecological Functions Assessment (WCEFA) was developed by the MNRF to provide a set of evaluation criteria focused on wetland attributes relevant to the completion of an EIS for renewable energy projects. The criteria to be evaluated are presented in Appendix C of the NHAG (MNR, 2012).

Each of the five wetlands that occurred within the ZOI were assessed using the WCEFA to determine the potential impacts created by installation of solar panels, construction of their access roads, and associated infrastructure (project components).

Data is based on GIS analysis, imagery interpretation, agricultural soil mapping, and on-site field investigations. The criteria and procedures found within Appendix C of the NHAG (MNR, 2012) are based on sections of the OWES – Southern Edition (MNR, 2002). Although this procedure does not evaluate the significance of these wetlands, it provides a procedure by which the significance of these wetlands can be assumed and their functions assessed based on the criteria established within the OWES manual. Specifically, these criteria were addressed in the following manner:

Biological Component

Wetland Size: This characteristic is based on the overall size of the contiguous wetland, including areas that are within but extend outside of ZOI. Data based on field surveys and/or imagery interpretation. (OWES Section 1.3)
Wetland Type: The overall dominant wetland type in the contiguous unit is provided. Data based on field surveys and/or aerial photo interpretation. (OWES Section 1.1.2)

Site Type: The wetland site type is provided. Data based on field surveys and/or aerial photo interpretation. (OWES Section 1.1.3)

Vegetation Forms: Based on ELC data, vegetation forms that were dominant, abundant, or occasional will be provided using OWES descriptors (e.g. “h” indicates deciduous trees). (OWES Section 1.2.2)

Proximity to Other Wetlands: The distance to the next closest wetland unit is provided. Adjacent wetland data may refer to agency wetland mapping or wetlands that were identified based on imagery interpretation. Data based on field surveys and/or imagery interpretation. (OWES Section 1.2.4)

Interspersion: When feasible, interspersion maps will be created and the total number of points provided. In some cases, this assessment may be based estimates of total interspersion points, with due consideration given to the size and complexity of the wetland type delineations. Data based on field surveys and/or imagery interpretation. (OWES Section 1.2.5)

Open Water Types: The open water type number (page 52 of the OWES manual) is listed in the Table; data will be based on field surveys and/or imagery interpretation. (OWES Section 1.2.6)

Hydrological Component

Flood Attenuation: The general proximity of the wetland within the local watershed is stated, indicating if it is headwater, mid-reach, or lower-reach. The wetland catchment area is also provided, where data will typically derive from Digital Elevation Model (DEM) mapping and resulting flow accumulations. Where this is not possible, data will derive from interpretation of topographic mapping.

Water Quality Improvement (Short Term):

- **Watershed Improvement Factor (WIF)** – this is based on presence/absence of specific site types (e.g. palustrine wetlands with no inflow and intermittent outflow, or riverine wetlands with permanent inflow and outflow). This data is derived from field surveys where possible, or flow accumulation and water course mapping (OWES Section 3.2.1.1)

- **Adjacent and Watershed Land Use (LUF)** – estimated percent of land use and land use type within the catchment area (i.e., agricultural, urban or forested) is included (data derived from field surveys and/or imagery interpretation [OWES Section 3.2.1.2])

- **Pollutant Uptake Factor (PUT)** – this is based on the single most dominant vegetation form observed within the wetland community (data derived from field surveys where possible [OWES Section 3.2.1.3]), described as:
Evaluation of Significance
January 17, 2017

- high proportion of emergent, submergent, and/or floating vegetation.
- a high proportion of live trees, shrubs, herbs, or mosses.
- a high proportion of wetland with little or no vegetation.

Water Quality Improvement (Long Term Nutrient Trap): Wetlands with a retentive capacity for nutrients (e.g., those with organic soils) provide protection for recharging groundwater. A characterization of wetland type and soil conditions is provided. Data based on field surveys where possible, or agricultural soil series mapping (OWES Section 3.2.2):

- Water Quality Improvement (Groundwater Discharge): OWES establishes eight indicators of hydrological discharge (OWES Section 3.2.3). When available, data indicative of groundwater discharge was provided.
- Shoreline Erosion Control: Shoreline wetlands provide a measure of protection from shoreline erosion caused by flowing water or waves. A description of the dominant shoreline vegetation is provided based on field surveys and/or imagery interpretation (OWES Section 3.4)
- Groundwater Recharge (Site Type): Site type is provided, where data is based on field surveys where possible (OWES Section 3.5.1)
- Groundwater Recharge (Soils): Soil type was indicated for each wetland unit, based on field surveys or agricultural soil mapping. (OWES Section 3.5.2)

Special Features

Species Rarity: All rare species observed during field surveys or species known to be present were documented. Data based on field surveys, review of background materials (including any existing wetland evaluations), and correspondence with agencies where possible (OWES Section 4.1.2).

Significant Features and Habitats: All known significant features and habitats present in the wetland are documented. Features/Habitat of interest includes Colonial Waterbird Habitat, Winter Wildlife Cover, Waterfowl Staging and/or Moultin Areas, Waterfowl Breeding, and Migratory Passerine, Shorebird, or Raptor Stopover Areas. Data based on field surveys, background data, and correspondence with agencies where possible (OWES Section 4.2). Information on significant deeryards, obtained from LIO mapping, was also reviewed.

Fish Habitat: This provides presence/absence data of fish species observed during field surveys; if surveys indicate that fish were observed (regardless of species), the wetland is considered to provide suitable fish habitat. (OWES Section 4.2.6)

4.1.2 Woodlands

An assessment of woodland significance was applied to each of the five woodlands identified within the ZOI, using the guidance and criteria outlined in the NHAG (MNR, 2012). Criteria to be
used to evaluate the significance of woodlands include woodland size, interior, and proximity to other natural features, linkages, water protection, diversity, and uncommon characteristics.

Woodlands are to be assessed within the context of the regional landscape and standards for each criterion vary based on the percentage of woodland cover in the municipality where the Project is proposed. The Project is located in the Township of South Stormont within the United Counties of Stormont, Dundas and Glengarry, with a reported percent forest cover value of 33% (Counties of Stormont, Dundas and Glengarry Official Plan, 2009). As per the NHAG (MNR, 2012), woodlands are considered significant if they are greater than 50 ha in size in areas where woodland cover is between 31-60%.

The 50 ha size threshold was combined with other criteria appearing the NHAG to assess significance of all woodlands identified within the ZOI of the Project Location, as described below. A summary of these criteria and the results from this assessment are discussed further in Table B7, Appendix B.

Woodland Size: woodlands are considered significant if they are greater than 50 ha.

Woodland Interior: woodlands are considered significant if they have interior habitat greater than 8 ha (defined as more than 100 m from the edge).

Proximity to other significant woodlands or habitats: woodlands are considered significant if they are located within 30 m of an identified significant feature or fish habitat and the woodland is 10 ha or larger.

Linkages: woodlands are considered significant if they are located between two other significant features each of which is within 120 m and the woodland is 10 ha or larger.

Water Protection: woodlands are considered significant if they are located within 50 m of a sensitive hydrological feature (i.e., fish habitat, groundwater discharge, headwater area) and the woodland is 4 ha or larger.

Woodland diversity: woodlands are considered significant if they have an area dominated by native woodland species and the woodland is 10 ha or larger.

Uncommon characteristics: woodlands are considered significant if they have uncommon species composition, cover type, age or structure or are older than 100 years old and the woodland is 4 ha or larger.

Woodlands that meet the minimum standard for any one of these criteria are considered significant.
4.1.3 Wildlife and Wildlife Habitat

In accordance with Appendix D of the NHAG (MNR, 2012), Generalized Candidate SWH is treated as significant.

4.2 RESULTS

4.2.1 Wetlands

The WCEFA assessment results for the five wetlands within the ZOI are presented in Table B6, Appendix B. All wetlands are considered significant and are carried forward to the EIS.

Significant wetlands are shown on Figure 5, Appendix A and summarized in Table 4.1.

4.2.2 Woodlands

Results of the evaluation of significant woodlands are provided in Table B7, Appendix B. Four of the five woodlands met the criteria for significance based on criteria standards within the NHAG (MNR, 2012), including Features: wo01-03, wo05. These features are shown on Figure 5, Appendix A, summarized in Table 4.1, and included in the EIS.

4.2.3 Wildlife and Wildlife Habitat

Generalized Candidate SWH is treated as significant and an EIS is required. All Generalized Candidate SWH is shown on Figure 5, Appendix A.

4.3 SUMMARY

This NHA was undertaken to identify natural features found within the Project Location and within the ZOI and to evaluate their significance. Significant features as per results of the EOS and their respective closest distances to project components and Project Location are summarized in Table 4.1. No significant features occurred within the Project Location.

Table 4.1: Summary of Significant Natural Features Carried Forward to EIS

<table>
<thead>
<tr>
<th>Feature ID</th>
<th>Feature Type</th>
<th>Distance to Project Component (m)</th>
<th>Distance to Project Location (m)</th>
<th>Project Component in Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>we1</td>
<td>Wetland Solar Panel Area – 21</td>
<td>12</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>we2</td>
<td>Wetland Solar Panel Area – 10</td>
<td>0 (adjacent)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>we3</td>
<td>Wetland Solar Panel Area – 13</td>
<td>0 (adjacent)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>we4</td>
<td>Wetland Parking / Laydown Area – 52</td>
<td>35</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>we5</td>
<td>Wetland Point of Common</td>
<td>11</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.1: Summary of Significant Natural Features Carried Forward to EIS

<table>
<thead>
<tr>
<th>Feature ID</th>
<th>Feature Type</th>
<th>Distance to Project Component (m)</th>
<th>Distance to Project Location (m)</th>
<th>Project Component in Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo1</td>
<td>Woodland</td>
<td>Coupling / Connection on Line – 17</td>
<td>0 (adjacent)</td>
<td>None</td>
</tr>
<tr>
<td>wo2</td>
<td>Woodland</td>
<td>Solar Panel Area – 17</td>
<td>0 (adjacent)</td>
<td>None</td>
</tr>
<tr>
<td>wo3</td>
<td>Woodland</td>
<td>Parking / Laydown Area – 32</td>
<td>15</td>
<td>None</td>
</tr>
<tr>
<td>wo5</td>
<td>Woodland</td>
<td>Point of Common Coupling / Connection on Line – 17</td>
<td>11</td>
<td>None</td>
</tr>
<tr>
<td>GH</td>
<td>Generalized Candidate Significant Wildlife Habitat</td>
<td>Solar Panel Area - 7 Solar Panel Area -17</td>
<td>0 (adjacent)</td>
<td>None</td>
</tr>
</tbody>
</table>

4.4 QUALIFICATIONS

The following Stantec personnel were responsible for the application of evaluation criteria and procedures:

- Melissa Straus, Terrestrial Ecologist (EOS)
- Brian Miller, Terrestrial Ecologist (wetland EOS; OWES Certified)
- Anna Corrigan, Terrestrial Ecologist (EOS)

Curricula vitae are provided in Appendix E.
5.0 ENVIRONMENTAL IMPACT STUDY

Section 38 of O. Reg. 359/09 requires that an EIS be prepared for the construction of any solar project components proposed in or within 50 m of significant natural features (e.g., earth and life science ANSI, woodlands, wildlife habitat) or within 50 m of a PSW, provincial park, or conservation reserve. The purpose of an EIS is to identify and assess any potential negative environmental effects of the Project on the natural features throughout its lifecycle (e.g., construction, operation, and decommissioning). Potential negative effects are avoided or minimized through the provisioning of detailed mitigation measures.

The primary mitigation measure employed to reduce impacts to the form and function of natural features was avoidance. Modifications to the site plan resulting from outcomes of the site investigation and EOS led to siting all project components outside of natural features and entirely within actively cultivated agricultural land.

Despite siting the Project entirely within agricultural lands, significant natural heritage features occur on the adjacent lands and within the ZOI, summarized in Table 4.1, and include:

- Significant Wetlands (we01-05)
- Significant Woodlands (wo01-03, wo05)
- Generalized Candidate SWH (GH)

The NHAG (MNR, 2012), the SWHTG (MNR, 2000), and the SWHiST (MNRF, 2014) were used to assist in the evaluation of impacts and mitigation measures.

5.1 SUMMARY OF PROJECT COMPONENTS

This section provides a description of the design of the main facility components identified in Figure 2, Appendix A.

Construction is proposed to begin in early 2018 with culvert installation followed by the bulk of construction occurring in the spring/summer/fall of 2018. Temporary work space reclamation, final grading, and commercial operation are anticipated fall 2018.

5.1.1 Solar Panels

The Project will include the installation of approximately 30,000 to 50,000 solar panels. The exact make and model of the solar panels will be determined at a later date, but are anticipated to be monocrystalline/polycrystalline silicon technology with a rated power of 300-420 W per panel and measure approximately 2 m long by 1 m wide. Each solar panel will be mounted on a galvanized steel and/or aluminum rack system that is positioned approximately 0.5 to 1.5 m above finished grade either at an angle between 20 and 40 degrees (fixed tilt) or with a +/- 60-
degree range of motion (single axis tracking). The bottom of the solar panels in a fixed tilt racking system would be elevated at a height of at least 30 cm above the floodplain. Solar panels in the single axis tracking system would be elevated at a height of at least 30 cm above the floodplain while the panels are in a table position (i.e., flat horizontal position) as the panels would be manually placed in this position in the event of a flood event. Fixed tilt panels would be installed in rows facing south and the tracking system would be tracking east/west on a north/south axis.

If any solar panels are damaged during operation of the Project, it is possible that they may be replaced with a different panel make and/or model available at the time.

The racks and solar panels will be supported using one, or a combination, of the following types of foundations:

- generic helical pier, consisting of a central shaft with a circular helical steel blade welded at the bottom
- machine augured holes and poured concrete footings for the galvanized-steel rack upright support posts
- machine augured holes and compacted stone screenings as footings for the galvanized-steel rack upright support posts.

5.1.2 Access Roads

Existing provincial and county roads will be used to transport project-related components, equipment and personnel to the Project Location. An existing entrance from Cornwall Centre Road is anticipated to be used for permanent primary access to the facility for the duration of the operational life of the Project. The entire length of the existing access road into the facility will be upgraded from dirt to gravel, as described below. A second gravel access road from Cornwall Centre Road, west of the existing primary access road, is being proposed during construction. At the end of construction, the secondary access road will be removed and included in the tree planting area. Additional access roads may be considered as the Project design evolves.

During upgrading of the primary access road and construction of the secondary access road, topsoil will be stripped along the road allowance, stockpiled and reused to the extent possible for site landscaping. The roadbed will be constructed from gravel and graded to facilitate drainage. The road will be approximately 4 m wide with an additional 1 m of compacted shoulders on each side for a total width of 6 m. Road construction will require excavators, dump trucks and compaction equipment.

An upgraded entrance culvert may be required within the road allowance of Cornwall Centre Road for the primary access road. Additionally, installation of a temporary entrance culvert within the road allowance of Cornwall Centre Road will be required to facilitate construction of
the secondary access road. New or upgraded entrance culverts will be installed by the Proponent and/or general contractor. Entrance culverts will be installed between July 16th and March 14th in accordance with the appropriate MNRF in-water timing windows (work is not permitted from March 15th to July 15th). Permits for each temporary entrance culvert will be required from the Township of South Stormont, the City of Cornwall, and the RRCA under O. Reg. 175/06. Culvert installation activities will conform to Ontario Provincial Standard Specification (OPSS) 421– Construction Specification for Pipe Culvert Installation in Open Cut.

The proposed grassed laneways between each row of solar panels (within each solar unit) will not require any upgrades or construction preparation other than general site grading or seeding, as required.

Since the solar panels are mounted above the ground, infiltration of water through vegetation and the underlying subsurface material will be maintained. Surface drainage will continue to be directed to existing receiving systems (drainage paths, roadside ditches, etc.). Since the existing drainage conditions will not change a general area-wide stormwater system is not required. The small increase in runoff from the gravel access roads will be attenuated and filtered through local ditches and no constructed catch basins or other management techniques are required.

5.1.3 Inverters and Step-Up Transformers

Four inverter step-up transformers and inverters will be located within the Project Location. The specifications of the inverters will be determined by the Proponent during the detailed design phase. In accordance with the specifications, the manufacturer of the inverters and inverter step-up transformers will be selected by Proponent or the general contractor during the detailed design phase. The inverters, inverter step-up transformers, and ancillary equipment such as switches, fuses and surge arresters will be delivered to the Project Location by truck and will be either fully assembled upon delivery, or will be assembled at the Project Location.

The stations will likely rest on an elevated platform at least 30 cm above the floodplain and supported by helical piles or concrete piers.

5.1.4 Substation

A main power transformer is being considered for this Project. The project will require a 44 kV substation comprised of circuit breakers, disconnect switches, surge arresters, station service transformer for auxiliary services, and, revenue metering equipment. In the event that a main power transformer is included in the final design, the voltage will be raised from 27.6kV / 34.5 kV to 44 kV at the substation. A separate chain link fence will be installed around the perimeter of the substation site. The control building may be located inside the fenced area of the substation, or may be located outside of the fenced area of the substation (but within the perimeter fence) to provide office space for maintenance personnel. All equipment will be preassembled before it is transported to the Project Location.
The substation access will be accessible from the permanent site access road, not a separate access. A small permanent parking area will be constructed adjacent to the substation. To prepare for construction of the substation and parking area, topsoil will be stripped, stockpiled and reused to the extent possible during site landscaping. Excavations of approximately 1-2 m depth will be required for the equipment and building foundations and for underground utilities. The entire substation area will be raised approximately 1 m with fill material to elevate the ground level a minimum of 30 cm above the floodplain. The fill material will either be sourced on site or from a nearby quarry. Equipment used will be dump trucks, excavators, bull dozers, and compactors.

Concrete construction would include the installation of the footings for the control building, equipment pad and supports. Excavations will be backfilled using granular fill and excavated materials.

The equipment will be supported by either cast-in place slab-on-grade concrete pads or structural steel piers and the entire fenced area will be graded and overlaid with a clear stone granular material. The specific make of the electrical equipment will be selected by the Proponent or general contractor during the detailed design phase and based on specifications provided by the Proponent. The equipment in the substation will also provide a supervisory control and data acquisition (SCADA) system for protection, control and monitoring of the substation and the facility.

5.1.5 Operations and Maintenance Storage Area

The operations and maintenance storage area may be comprised of one or two 40 foot storage containers installed within the raised substation area to elevate the containers 30 cm above the floodplain level and upon an area of compacted gravel or set upon a concrete pad and will include a locking door. The storage containers will be used to store equipment and spare parts used for maintenance activities. Spill response and containment materials will also be stored.

During construction of the operations and maintenance storage area, topsoil will be stripped, stockpiled and reused to the extent possible during site landscaping. Gravel, if required, will be laid and compacted. The depth of gravel will vary dependent upon site conditions/requirements at the time of construction.

5.1.6 Perimeter Fence

A 1.8 m high steel chain link fence topped with barbed wire will be constructed around the entire perimeter of the facility to prevent trespassing and vandalism and provide safety to the public. Manual locking gates will be installed at the facility entrances located at the proposed permanent access road.
Installation of the fence will require the use of a skid steer and auger to excavate holes for the fence posts. The fence posts will be secured into the ground using cement. The perimeter fencing will be installed near the end of construction after the solar equipment is installed.

The perimeter fence will be installed at or within the boundary of the Project Location shown in Figure 1, Appendix A.

5.1.7 Construction Staging and Temporary Construction Areas

There will be two construction staging areas; a 1.1 ha (2.8 acre) area east of the Hydro One corridor, and a 1.6 ha (4 acre) area west of the Hydro One corridor, as shown on Figure 3 (Appendix A). The construction staging areas will be laid with compacted gravel and will support the following construction operations:

- portable construction trailer(s) for Project management offices
- parking areas for the general contractor and subcontractors and other Project personnel;
- portable generators
- equipment storage and maintenance area
- truck unloading and loading area
- approved temporary fuel tanks, in properly contained spill containment structures
- disposal facilities for various solid wastes
- temporary toilet facilities – self-contained with no on-site disposal (additional facilities will be located throughout the Project Location)
- water and rinsing facilities
- laydown area for panels, inverters, inverter step-up transformers, electrical cabling and other Project components
- laydown areas for small scale solar materials, and equipment
- laydown areas for electrical power collection materials

During construction of the temporary staging area, topsoil within both areas will be stripped, stockpiled and reused to the extent possible for site landscaping. Gravel will be laid and compacted. Once construction is complete, the temporary staging area will be removed and restored as outlined in Section 2.2.5 in the Construction Plan Report.

5.2 POTENTIAL IMPACTS OF THE PROJECT

The following sections, in accordance with O. Reg. 359/09, detail potential negative impacts of the Project on the adjacent significant natural heritage features.
5.2.1 Significant Wetlands

No significant wetlands occur within the Project Location, with five (we1-5, Figure 5, Appendix A) occurring within the ZOI. Wetland units ranged in size from 0.5 ha to 31.5 ha and were comprised primarily of wooded lowlands and swamps interspersed with swamp thickets and divided by roadways and transmission corridors. The solar panel areas are the closest project component to We01-03, with the closest point being 10 m away. We04 and we05 are separated from the Project by Cornwall Centre Road, with the closest project component consisting of the PCC/Connection on Line, and the closest point being 17 m away. The Project Location is located adjacent (0 m) to we02 and we03.

No components of the Project Location are located within the significant wetland boundaries as identified and confirmed through site investigations. As the Project Location and all construction and operational activities are sited outside all significant wetland boundaries, there will be no direct loss of significant wetland habitat or function as a result of the Project.

Construction activities during the installation of the project are anticipated to be low impact and short term in duration.

There will be no clearing of trees in any of the wetland features that could result in wetland desiccation or drying. The risk of accidental intrusion and vegetation removal will be minimized through demarcation of work areas, as described below. The type of construction proposed involves works having little or minimal impact to pervious areas and precludes the potential for effects associated with changes in water balance (i.e., surface and ground water changes).

During operation there may be occasional maintenance activities required, but this will occur outside of all wetland boundaries. Maintenance activities are expected to be only required occasionally and will be short term in duration. Potential for impacts such as dust and spills are considered low from maintenance activities.

Decommissioning of the Project is expected to experience similar impacts to those described above during construction.

Mitigation Measures

Avoidance is the main strategy used to minimize impacts to wetland habitat within 50 m of the Project Location. All components of the Project are sited outside the wetland feature boundaries. Standard best management practices will be applied to all construction activities:

- No development will be permitted within the significant wetland boundaries.
- The edge of the work zone (i.e., Project Location) will be flagged or staked in the field prior to construction to assist with the demarcation of the construction area, to ensure construction activities avoid these sensitive areas and to assist with the proper field installation of erosion and sediment controls.
• Silt barriers (e.g., fencing) will be erected along the edge of all wetland boundaries where they are located within 30 m of construction areas. These barriers will be monitored weekly during construction and after periods of high precipitation and bi-weekly following construction and properly maintained during and following construction until soils in the construction area are re-stabilized with vegetation.

• Environmental inspectors will ensure construction vehicles and personnel stay within the construction envelope, thereby limiting the disturbance of natural vegetation.

• All refueling activities will occur more than 30 m from all wetlands. In the event of an accidental spill, the Ministry of Environment and Climate Change (MOECC) Spills Action Centre will be contacted and emergency spill procedures implemented immediately.

• Any fuel storage and activities with the potential for contamination will occur in properly protected and sealed areas greater than 30 m from a wetland.

• In the case of dewatering, mitigation as detailed in Section 5.3.1 will be followed.

5.2.2 Significant Woodlands

No significant woodlands occur within the Project Location, with four (wo01-03, wo05, Figure 5, Appendix A) occurring within the ZOI. Significant woodland features ranged in size from 4.9 ha to 50.6 ha and were comprised of upland forests, swamps, and more open woodlands divided by roadways, transmission corridors and thickets. Wo01-03 are located 7-32 m from solar panel areas and adjacent to (0 m) to the Project Location. As detailed above with wetlands, wo05 is separated from the Project by Cornwall Centre Road, and is 11 m away from the Project Location.

No project components are located within significant woodlands. As the Project Location and all construction and operational activities are sited outside of significant woodland boundaries, there will be no direct loss of significant woodland habitat or function to these features as a result of the Project.

Indirect effects resulting from construction activities, such as dust generation, sedimentation and erosion will be short term, temporary in duration and mitigated through the use of standard site control measures specified in the Construction Plan Report (under separate cover). During operation there is the potential for spills and contamination to the woodland. Accidental spills area anticipated to occur infrequently and be spatially limited. With the implementation of specified mitigation measures outlined in the Construction Plan Report, no significant adverse residual effects from waste material disposal or accidental spills are anticipated.

Decommissioning of the facility is expected to impose similar impacts to those described above during construction.
Mitigation Measures

The following mitigation measures will be implemented for significant woodlands:

- No development will occur within the woodland boundary.
- The edge of the work zone (i.e., Project Location) will be flagged or staked in the field prior to construction to assist with the demarcation of the construction area, to ensure construction activities avoid these sensitive areas and to assist with the proper field installation of erosion and sediment controls.
- Silt barriers (e.g., fencing) will be erected along the edge of all woodland boundaries where they are located within 30 m of construction areas. These barriers will be monitored weekly during construction and after periods of high precipitation and bi-weekly following construction and properly maintained during and following construction until soils in the construction area are re-stabilized with vegetation.
- Environmental inspectors will ensure construction vehicles and personnel stay within the construction envelope, thereby limiting the disturbance of natural vegetation.
- All refueling activities will occur more than 30 m from the woodlands. In the event of an accidental spill, the MOECC Spills Action Centre will be contacted and emergency spill procedures will be implemented immediately.
- All maintenance activities, vehicle refueling or washing, as well as the storage of chemical and construction equipment will be located more than 30 m from significant woodlands.
- Accidental damage to trees, or unexpected vegetation removal, may require re-planting of similar, native species. If re-planting is required, MNRF will be consulted on the appropriate action(s) to be taken.
- Storage of fuel and activities with the potential to cause contamination will occur in properly protected and sealed areas outside the woodland boundaries.

5.2.3 Generalized Candidate Significant Wildlife Habitat

Generalized Candidate SWH is located outside the Project Location but within the ZOI within 7 m in proximity to solar panel area and adjacent (0 m) to the Project Location (Figure 5, Appendix A).

As the Project components and all construction and operational activities are sited outside of the boundaries of these features, there will be no direct loss of Generalized Candidate SWH or function to these features as a result of the Project.

Potential negative effects from construction activities could include habitat avoidance/disturbance caused by noise. However, given the rural and agricultural land uses currently occurring adjacent to these features, and their location adjacent to existing roads, they are not considered highly sensitive to temporary disturbances. Indirect impacts resulting
from construction activities, such as noise, dust generation, sedimentation and erosion are expected to be short term, temporary in duration and mitigated through the use of standard site control measures. Disturbance impacts from operation of a solar facility on resident wildlife are considered negligible.

Additional mitigation measures for noise during the construction phase of the project are outlined in Section 3.4.2 in the Construction Plan Report. Impacts occurring during the decommissioning of the facility are similar to those described above during construction, comprised predominantly of short term disturbances associated with noise. Mitigation measures for all phases of the Project are detailed below.

Mitigation Measures

The following mitigation measures will be applied for Generalized Candidate SWH:

- Mitigation measures for the significant wetland and woodland features will be applied as outlined above, as Generalized Candidate SWH is contained within these features.
- To the extent possible, construction activities within 30 m of Generalized Candidate SWH will occur during daylight hours to avoid excessive noise and/or light disturbances.

5.3 BEST MANAGEMENT PRACTICES AND OTHER GENERAL CONSTRUCTION MITIGATION

5.3.1 Dewatering

Dewatering is currently not anticipated, however, if it is determined during detailed design that dewatering will be required, the following best management practices detailed below will be implemented prior, during, and after dewatering activities.

Prior to Dewatering:

- During site preparation, silt fencing or sediment controls will be included to retain sediments on site so they do not enter any significant natural feature. All sediment control structures will be inspected regularly, and repaired/maintained as necessary.
- The area to be used for dewatering will be clearly marked with flagging and/or snow-fencing prior to work commencing.

During Dewatering:

- Minimize the length of time that the excavation is open and monitor seepage.
- Set back discharge locations at least 30 m from significant natural features and direct water away from significant natural features and not directly into wetlands.
The specific locations for directing treated groundwater discharge will be selected in the field at the time of construction, but will generally be limited to existing drainage ditching or agricultural fields. This will involve input from a qualified fisheries biologist (in the case of drains) or spread across the buildable area and appropriate energy dissipation techniques will be used to reduce the potential for erosion and scouring.

- Piping will be free of leaks and will be properly anchored to prevent bouncing and snaking during surging.
- The rate of discharge will be monitored to ensure no erosion or flooding occurs. If energy dissipation measures are found to be inadequate, the rate of dewatering will be reduced or ceased until satisfactory mitigation measures are in place.
- Groundwater discharge will undergo appropriate water quality and temperature controls, as required, and will be directed through a sediment filter (i.e., filter bag), sediment basin or other appropriate device capable of handling the anticipated volumes of water, before being discharged to the environment.
- The use of sediments bags (or filter rings) will be used as appropriate to filter out suspended sediment prior to discharge. Any sediment bags or filter rings will be monitored during pumping to ensure their efficacy, with any clogging or failures to be rectified immediately.

Post-Dewatering:
- After the staging area and dewatering work area is no longer required, any remaining disturbed soils will be returned to pre-disturbance conditions and/or reseeded.

Further dewatering recommendations will be reviewed upon the completion of the detailed engineering design.

5.4 MONITORING PLAN

O. Reg. 359/09 requires that applicants prepare an Environmental Effects Monitoring Plan (EEMP) as part of the Design and Operations Report (under separate cover). Due to the siting of all Project components outside of natural features, potential impacts are restricted to indirect effects during construction and decommissioning of the Project.

A construction-phase monitoring program is proposed as described above to address potential indirect effects to adjacent features. A summary of these potential negative effects to significant natural features, mitigation strategies, performance objectives, monitoring plan principles (including general methods, location, frequency, rationale and reporting), and contingency measures are outlined in Table B.8 (Appendix B).

5.5 SUMMARY OF IMPACTS AND MITIGATION

Through a comprehensive review of background material in conjunction with site-specific investigations and an evaluation of significance, significant, or presumed significant, natural features have been identified adjacent to the Project Location (e.g., within the ZOI). This included significant woodlands, wetlands, and Generalized Candidate SWH.
As part of this EIS, construction monitoring commitments and mitigation measures have been recommended to be implemented as part of the development of the Project. These recommendations have been developed in consideration of the significant natural features and wildlife habitats that were identified in Section 4.0.

The application of these mitigation measures are expected to address any negative environmental effects of construction, operation and decommissioning of the Project on the natural heritage features located in the ZOI and their associated ecological functions.
6.0 REFERENCES

BARLOW SOLAR ENERGY CENTRE
NATURAL HERITAGE ASSESSMENT AND ENVIRONMENTAL IMPACT STUDY

References
January 17, 2017

Ministry of Natural Resources and Forestry (MNRF). 2015. SWH Ecoregion 6E Criterion

Ministry of Natural Resources and Forestry (MNRF), pers. comm. 2016. Communication with Information Request Services. MNRF Kemptville District.

Raisin Region Conservation Authority. pers. comm. 2016. Communications with Matthew Levac.

References
January 17, 2017

APPENDIX A: FIGURES
Ecological Land Classification Description:

- **CVI** - Transportation and Utilities
- **CVI_1** - Road
- **FOMM9** - Fresh Moist White Pine Hardwood Mixed Ecotype
- **OA** - Open Aquatic
- **OA_GM1** - Annual Row Crops - Corn
- **SWDM1** - Oak Mineral Deciduous Swamp Ecotype
- **SWDM2** - Maple Mineral Deciduous Swamp Ecotype
- **SWDM3** - Maple Organic Deciduous Swamp Ecotype
- **SWDM3** - Mixed Deciduous Strand Thickened Ecotype
- **SWDM3** - Mixed Deciduous Moist Ecotype
- **THD** - Deciduous Thickets
- **THDM2** - Dry - Fresh Deciduous Shrub Thickened Ecotype
- **WDM5** - Fresh Moist Deciduous Woodland Ecotype

Legend:
- **Project Location**
- **Solar Panel Area**
- **Substation**
- **Tree Planting Area**
- **Existing Features**
 - Major Road
 - Minor Road
 - Hydro One Distribution Line (Hydro One)
 - Hydro One Transmission Line
 - Pipeline
 - Railway
 - Watercourse
 - Property Boundary
 - Waterbody

Notes:
1. Geodatabase System: MDS 1983 UTMs zone 18N
2. Base features and aerial imagery produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen’s Printer for Ontario, 2016.
3. Imagery Source: DRAPE 2014
4. Waterbody and wetland mapping within 120m of the Project Location has been updated based on field studies completed as part of the EIA process under O. Reg. 359/09. See the Water Assessment and Water Body Report for details.

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. This report is not to be relied upon for verifying the accuracy and completeness of the data. The recipient assumes full responsibility for verifying the accuracy and completeness of the data. All financial reports, figures, tables, etc. are subject to change. This is a draft document and is subject to change. Stantec assumes no responsibility for data supplied in electronic format.
Natural Features

1. Coordinate System: NAD 1983 UTM Zone 18N
2. Base features and aerial imagery produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen’s Printer for Ontario, 2016.
3. Imagery Source: DRAPE 2014
4. Waterbody and watercourse mapping within 120 m of the Project Location has been updated based on field studies completed as part of the REA process under O. Reg. 359/09. See the Water Assessment and Water Body Report for details.

Legend

Natural Features
- Candidate Significant Wildlife Habitat
- Wetland
- Woodland

Proposed Project Components
- Project Location
- Zone of Investigation (50 m from Project Location)

Existing Features
- Expressway / Highway
- Major Road
- Minor Road
- Watercourse
- Waterbody

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient indemnifies Stantec, its officers, employees, consultants and agents, from any and all losses arising in any way from the receipt or use of this data.
Significant Habitat

1. **Coordinate System:** NAD 1983 UTM Zone 18N
2. **Base features and aerial imagery produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen’s Printer for Ontario, 2016.**
3. **Imagery Source:** DRAPE 2014
4. **Waterbody and watercourse mapping within 120 m of the Project Location has been updated based on field studies completed as part of the REA process under O. Reg. 359/09. See the Water Assessment and Water Body Report for details.

Legend

- **Natural Features**
 - Candidate Significant Wildlife Habitat
 - Significant Wetland
 - Significant Woodland

- **Proposed Project Components**
 - Project Location
 - Zone of Investigation (50 m from Project Location)

- **Existing Features**
 - Expressway / Highway
 - Major Road
 - Minor Road
 - Watercourse
 - Waterbody
APPENDIX B: TABLES
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEASONAL CONCENTRATION AREAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterfowl Stopping and Staging Area (Terrestrial)</td>
<td>• Fields with sheet water during spring (mid-March to May) or annual spring melt water flooding found in any of the following Community Types: Meadow (CUM1), Thicket (CUT1). Agricultural fields with waste grains are commonly used by waterfowl, and these are not considered SWH unless they have spring sheet water available.</td>
<td>The records review completed for the Project Location and Zone of investigation (ZOI) did not identify known occurrences of waterfowl stopping and staging habitat.</td>
<td>ELC (Ecological Land Classification) was used to of the presence of vegetation communities that would support waterfowl stopping and staging areas (terrestrial).</td>
<td>No CUM1 or CUT1 were identified at Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Waterfowl Stopover and Staging Area (Aquatic)</td>
<td>• Ponds, marshes, lakes, bays, coastal inlets, and watercourses used during migration. These habitats have an abundant food supply (mostly aquatic invertebrates and vegetation in shallow water) Sewage treatment ponds and storm water ponds do not qualify as a SWH; however, a reservoir managed as a large wetland or pond/lake does qualify. The following Community Types: Shallow Marsh (MAS), Shallow Aquatic (SA), Deciduous Swamp (SWD).</td>
<td>The records review completed for the Project Location and ZOI did not identify known occurrences of waterfowl concentrations in aquatic habitat.</td>
<td>ELC surveys were used to identify the presence of vegetation communities that would support waterfowl stopping and staging areas (aquatic). Only those communities that contain open standing water (i.e. open aquatic areas) and were associated with marshes, shallow aquatic areas, or swamp communities were considered candidate SWH.</td>
<td>No Shallow Marsh (MAS), Shallow Aquatic (SA), Deciduous Swamp (SWD) occurred at the Project Location.</td>
<td>“Generalized Candidate Significant Wildlife Habitat (SWH)”</td>
</tr>
<tr>
<td>Shorebird Migratory Stopover Area</td>
<td>• Shorelines of lakes, rivers and wetlands, including beach areas, bars and seasonally flooded, muddy and un-vegetated shoreline habitats. Vegetation community types: Meadow Marsh (MAM), Beach/Bar (BB), or Sand Dune (SD). Sewage treatment ponds and storm water ponds do not qualify as a significant wildlife habitat.</td>
<td>The Barlow Solar Energy Centre is not located along the shoreline of a lake or river. No known shorebird migratory stopover areas were identified through the records review.</td>
<td>ELC surveys were used to identify the presence of vegetation communities Meadow Marsh (MAM), Beach/Bar (BB), or Sand Dune (SD) that would support a Shorebird Migratory Stopover Area</td>
<td>The Project is not located on the shoreline of a lake or river and did not contain wetlands that included beach areas, bars and seasonally flooded, muddy or un-vegetated shoreline habitats. No Meadow Marsh (MAM), Beach/Bar (BB), or Sand Dune (SD) occurred at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Raptor Wintering Area</td>
<td>• Presence of fields and woodlands, i.e. at least one of the following Community Types: Deciduous Forest (FOD), Mixed Forest (FOM) or Coniferous Forest (FOC), in addition to one of the following Upland Community Types: Meadow (CUM), Thicket (CUT), Savannah.</td>
<td>The records review did not identify any known raptor wintering areas at the Project Location or ZOI.</td>
<td>ELC surveys were used to identify the presence of vegetation communities deciduous Forest (FOD), Mixed Forest (FOM) or Coniferous Forest (FOC), in addition to Meadow (CUM).</td>
<td>The Project Location is in an actively managed agricultural field, Forest and meadow/thicket or savannah habitats do not occur at the Project Location. Thicket communities with forest</td>
<td>“Generalized Candidate Significant Wildlife Habitat (SWH)”</td>
</tr>
</tbody>
</table>

1 Definitions taken from SWH Criteria Schedules for Ecoregion 6E (MNRF, 2015).
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat 1</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle Wintering Areas</td>
<td>Over-wintering sites are permanent water bodies, large wetlands, and bogs or fens with adequate dissolved oxygen. Water has to be deep enough not to freeze and have soft mud substrate. Snapping and Midland Painted turtles utilize ELC community classes: Swamp (SW), Marsh (MA), Open Water (OA) and Shallow Aquatic (SA), and ELC community series: Open Fen (FEO) and Open Bog (BOO). Man-made ponds such as sewage lagoons or storm water ponds are not considered SWH.</td>
<td>The records review completed for the Project Location and ZOI did not identify known occurrences of turtle wintering habitat.</td>
<td>ELC surveys were used to identify areas of permanent standing water but not deep enough to freeze at the Project Location and ZOI that would support Raptor Wintering Areas.</td>
<td>Community types were identified at the ZOI. In accordance with Appendix D of the NHAG (MNRF, 2012) given the landscape and geography (specifically the ELC assessment) this wildlife habitat type is considered to have the potential to occur. It is treated as existing and described as “Generalized Candidate SWH”</td>
<td>“Generalized Candidate SWH” in the ZOI is treated as significant.</td>
</tr>
<tr>
<td>Bat Hibernacula</td>
<td>Hibernacula may be found in caves, mine shafts, underground foundations and karsts. May be found in these Community Types: Crevice (CCR), Cave (CCA), Crevice (CCR), Cave (CCA).</td>
<td>No known bat hibernacula were identified through the Records Review.</td>
<td>ELC surveys and associated wildlife habitat assessments were used to identify the presence of crevices and caves.</td>
<td>No crevices or caves were found at the Project Area or ZOI. No candidate habitat for bat hibernacula occurred at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Bat Maternity Colonies</td>
<td>Maternity colonies can be found in forested ecosystems. Community Types: Deciduous Forest (FOD) or Mixed Forest (FOM), that have >10/ha wildlife trees >25cm diameter at breast height (dbh).</td>
<td>The records review did not identify any known maternity roosts within the Project Location or ZOI.</td>
<td>ELC surveys were used to identify the presence of Deciduous Forest (FOD) or Mixed Forest (FOM) at the Project Location and ZOI.</td>
<td>No Deciduous and mixed forest roosts were found at the Project Location. No candidate habitat for bat maternity roosts occurred at the Project Location. Deciduous and mixed forest that supports maternity colonies for bats occurred in the ZOI. In accordance with Appendix D of the NHAG (MNRF, 2012) given the landscape and geography (specifically the ELC assessment) this wildlife habitat type is considered to have the potential to occur. It is treated as existing and described as “Generalized Candidate SWH”.</td>
<td>“Generalized Candidate SWH” in the ZOI is treated as significant.</td>
</tr>
</tbody>
</table>

Stantec
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat 1</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reptile Hibernacula</td>
<td>Hibernation occurs in sites located below frost lines in burrows, rock crevices, broken and fissured rock and other natural features. The existence of features that go below the frost line, including rock piles or slopes, old stone fences and abandoned crumbling foundations assist in identifying candidate SWH. The following Community Types may be directly related to snake hibernacula: Talus (TA), Rock Barren (RB), Crevice (CCR), Cave (CCA), and Alvar (RBOA1, RBSA1, RSTA1).</td>
<td>The records review completed for the Project Location and ZOI did not identify known occurrences of reptile hibernaculum.</td>
<td>ELC surveys were utilized to identify community types that may the support reptile hibernacula. In addition, habitat features that would provide an underground route, act as a potential hibernacula including exposed rock crevices or inactive animal burrows were searched for during ELC surveys.</td>
<td>No Talus, Rock Barrens, Crevices, Caves or Alvar were identified at the Project Location. In addition no features (i.e. inactive burrows fissures etc.) that would provide access below the frost line were recorded during the site investigation.</td>
<td>N/A</td>
</tr>
<tr>
<td>Colonial-Nesting Bird Breeding Habitat (Bank and Cliff)</td>
<td>Eroding banks, sandy hills, borrow pits, steep slopes, sand piles, cliff faces, bridge abutments, slits, or barns found in any of the following Community Types: Meadow (CUM), Thicklet (CUT), Savanna (CUS), Bluff (BL), Cliff (CL). Does not include man-made structures (bridges or buildings) or recently (2 years) disturbed soil areas, such as berms, embankments, soil, or aggregate stockpiles.</td>
<td>The records review completed did not identify any known colonial bird nesting sites.</td>
<td>ELC surveys were utilized to assess the presence of Meadow (CUM), Thicklet (CUT), Savanna (CUS), Bluff (BL), Cliff (CL) at the Project Location and ZOI that could support colonial bird breeding habitat (bank and cliff). During the ELC survey any areas of exposed vertical surfaces, such as hills, valley slopes and banks were searched for and recorded.</td>
<td>No eroding banks, sandy hills, borrow pits, steep slopes and sand piles were present at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Colonial-Nesting Bird Breeding Habitat (Tree/Shrubs)</td>
<td>Identification of stick nests in any of the following Community Types: Mixed Swamp (SWM), Deciduous Swamp (SWD), and Treed Fen (FET). Nests in live or dead standing trees in wetlands, lakes, islands, and peninsulas. Shrubs and occasionally emergent vegetation may also be used.</td>
<td>The records review completed did not identify any known colonial bird nesting sites at the Project Location or ZOI.</td>
<td>ELC Surveys were utilized to assess vegetation communities within the Project Location and ZOI that could support colonial bird breeding habitat (Mixed Swamp, Deciduous Swamp, and Treed Fen) and the presence of large stick nests was recorded during wildlife habitat assessment surveys.</td>
<td>No large stick nests or colonies were recorded at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Colonial-Nesting Bird Breeding Habitat (Ground)</td>
<td>Any rocky island or peninsula within a lake or large river. Nesting colonies of gulls and terns are on islands or peninsulas associated with open water or in marshy areas. For Brewer’s Blackbird, close proximity to watercourses in open field or pastures with scattered trees or shrubs found in any of the following Community Types: Meadow Marsh (MAM1-6), Shallow Marsh (MAS1-3), Meadow, and Cliff (CL).</td>
<td>The records review completed did not identify any known colonial bird nesting sites at the Project Location or ZOI. The Project Location and ZOI are not located on a rocky island or peninsula within a lake or large river. The Project is not located within the known range of Brewer’s Blackbird (Coadman et al., 2007).</td>
<td>N/A</td>
<td>No candidate habitat for reptile hibernaculum occurred at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: ZOI = Zone of Interest. ELC = Ecological Land Classification.
<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat 1</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
</table>
| Migratory Butterfly Stopover Areas | • Located within 5 km of Lake Ontario.
 • A combination of ELC communities, one from each land class is required; Field (CUM, CUT, CUG) and Forest (FOC, FOM, FOD, FUP).
 • Minimum of 10 ha in size with a combination of field and forest habitat present. | • The Project Location and ZOI are not located within 5 km of a Great Lakes shoreline. | N/A | N/A | N/A |
| Landbird Migratory Stopover Areas | • The following community types: Forest (FOC, FOM, FOD) or Swamps (SWC, SWM, SWD).
 • Woodlots must be >10 ha in size and within 5 km of Lake Ontario – woodlands within 2 km of Lake Ontario are more significant. | • The Project Location and ZOI are not located within 5 km of a Great Lakes shoreline. | N/A | N/A | N/A |
| Deer Yarding Areas | • Deer yarding areas are areas where deer move in response to the onset of winter snow and cold.
 • Usually mixed or deciduous forest with plenty of browse available for food. | • The identification and delineation of deer yards is the responsibility of the MNRF (MNRF, 2015).
 • Review of the NHIC and LIO databases, and consultation with the MNRF Kemptville District did not identify any deer yarding areas within the ZOI or Project Location (MNRF, 2016; LIO, 2016; NHIC, 2015).
 • The Project Location and ZOI are not located in an area that would constitute candidate significant wildlife habitat for deer yarding areas. | N/A | N/A | N/A |
| Deer Winter Congregation Areas | • Woodlots typically > 100 ha in size unless determined by the MNR as significant.
 • All forested ecosites within Community Series: FOC, FOM, FOD, SWC, SWM, SWD.
 • Conifer plantations much smaller than 50 ha may also be used | • MNRF undertakes the identification and delineation of significant deer winter congregation areas (MNRF, 2015).
 • Review of the NHIC and LIO databases, and consultation with the MNRF Kemptville District did not identify any deer wintering areas within the ZOI or Project Location (MNRF, 2016; LIO, 2016; NHIC, 2015).
 • The Project Location and ZOI are not located in an area that would constitute significant deer winter congregation areas. | N/A | N/A | N/A |

RARE VEGETATION COMMUNITIES

| Cliffs and Talus Slopes | • Any ELC Ecosite within Community Series: TAD, TAT, TAT, TAT, TAT, TAT, TAT, TAT, TAT, TAT, TAT.
 • Most cliff and talus slopes occur along the Niagara Escarpment. | A search of the NHIC database and other background information did not identify any records of known cliffs and talus slope communities in the ZOI or Project Location (LIO, 2016; NHIC, 2015). | ELC surveys were utilized to assess vegetation communities within the Project Location and ZOI that would be considered cliffs or talus slope communities. | No cliffs or talus slope communities were identified at the Project Location or ZOI.
 • No candidate wildlife habitat for cliffs or talus slope communities occurred at the Project Location or ZOI. | N/A |
| Sand Barrens | • Any of the following Community Types: SBO1 (Open Sand Barren Ecosite), SBF1 (Shrub Sand Barren Ecosite), SBT1 (Treed Sand Barren Ecosite).
 • A sand barren >0.5 ha is size. | A search of the NHIC database and other background information did not identify any records of known sand barren communities in the ZOI or Project Location (LIO, 2016; NHIC, 2015). | ELC surveys were utilized to assess vegetation communities within the Project Location and ZOI that would be considered sand barren communities. | No sand barren communities were identified at the Project Location or ZOI.
 • No candidate wildlife habitat for sand barren communities occurred. | N/A |
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat 1</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvars</td>
<td>Any of the following Community Types: ALO1 (Open Alvar Rock Barren Ecosite), AL51 (Alvar Shrub Rock Barren Ecosite), AT1 (Treed Alvar Rock Barren Ecosite), FOC1 (Dry-Fresh Pine Coniferous Forest), FOC2 (Dry-Fresh Cedar Coniferous Forest), CUM2 (Beadrock Cultural Meadow), CUS2 (Bedrock Cultural Savannah), CUY2-1 (Common Juniper Cultural Alvar Thicket), or CUY2 (Bedrock Cultural Woodland)</td>
<td>A search of the NHIC database and other background information did not identify any records of known alvar communities in the ZOI or Project Location (LIO, 2016; NHIC, 2015).</td>
<td>ELC surveys were utilized to assess vegetation communities within the Project Location and ZOI that would be considered alvar communities.</td>
<td>No vegetation communities indicating alvar communities and no supporting characteristics of alvar habitats such as exposed bedrock, alvar indicator species, patchy to barren vegetation were identified at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Old-growth Forest</td>
<td>Old-growth forests tend to be relatively undisturbed, structurally complex, and contain a wide variety of trees and shrubs in various age classes. These habitats usually support a high diversity of wildlife species. Any of the following Community Types: FOD (Deciduous Forest), FOM (Mixed Forest), FOC (Coniferous Forest) or Swamp (SWC, SWM, SWD). Forests greater than >140 years old and with no historical forestry management was the main criteria when surveying for old-growth forests. Woodlands >30 ha with >10 ha interior habitat (interior habitat considered with a 100 m buffer).</td>
<td>A search of the NHIC database and other background information did not identify any records of known old-growth forest in the ZOI or Project Location (LIO, 2016; NHIC, 2015).</td>
<td>ELC conducted in 2016 and was used to assess vegetation communities and the potential presence of old-growth forests. Forests greater than 120 years old and with no historical forestry management were the main criteria when identifying for old-growth forests.</td>
<td>No old-growth forests were identified at the Project Location or ZOI. No candidate wildlife habitat for old-growth forests occurred at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Savannahs</td>
<td>A Savannah is a tallgrass prairie habitat that has tree cover between 25 – 60% with no minimum size. Remnant sites such a railway right of ways are not SWH. Any of the following Community Types: TPS1 (Dry-Fresh Tallgrass Mixed Savannah Ecosite), TPS2 (Fresh-Most Tallgrass Deciduous Savannah Ecosite), TPW1 (Dry-Fresh Black Oak Tallgrass Deciduous Woodland Ecosite), TPW2 (Fresh-Most Tallgrass Deciduous Woodland Ecosite), CUS2 (Bedrock Cultural Savannah Ecosite).</td>
<td>A search of the NHIC database and other background information did not identify any records of known savannah communities in the ZOI or Project Location (LIO, 2016; NHIC, 2015).</td>
<td>ELC surveys were utilized to assess vegetation communities within the Project Location and ZOI that would be considered savannah communities.</td>
<td>No savannah communities were identified at the Project Location or ZOI. No candidate wildlife habitat for savannah communities occurred at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Tall-grass Prairies</td>
<td>A Tallgrass Prairie has ground cover dominated by prairie grasses with no minimum size. An open Tallgrass Prairie habitat has < 25% tree cover. Remnant sites such a railway right of ways are not SWH. Any of the following Community Types: TPO1 (Dry Tallgrass Prairie Ecosite), TPO2 (Fresh-Most Tallgrass Prairie Ecosite).</td>
<td>A search of the NHIC database and other background information did not identify any records of known tall grass prairie communities in the ZOI or Project Locations (LIO, 2016; NHIC, 2015).</td>
<td>ELC surveys were utilized to assess vegetation communities within the Project Location and ZOI that would be considered for tall grass prairie communities.</td>
<td>No tall grass prairie communities were identified at the Project Location or ZOI. No candidate wildlife habitat for tall grass prairie communities occurred at the Project Location or ZOI.</td>
<td>N/A</td>
</tr>
<tr>
<td>Other Rare Vegetation Communities</td>
<td>Rare vegetation communities may include beaches, fens, marsh, barrens, dunes and swamps. Provincially Rare S1, S2 and S3 vegetation.</td>
<td>A search of the NHIC database and other background information did not identify any records of known rare vegetation communities in the ZOI or Project Location and ZOI that would be considered additional rare</td>
<td>ELC surveys were utilized to assess vegetation communities within the Project Location and ZOI that would be considered additional rare</td>
<td>No rare vegetation communities were identified at the Project Location or ZOI. No candidate wildlife habitat for.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfowl Nesting Area</td>
<td>Any upland areas extending >120m away from a wetland (>0.5ha), or a wetland (>0.5ha) and any small wetlands (<0.5 ha) within 120 m.</td>
<td>The records review completed for the Project Location and ZOI did not identify known occurrences of waterfowl nesting areas.</td>
<td>The results of ELC surveys and GIS analysis of the landscape were used to identify upland areas of open habitat >120m wide that occurred adjacent to a large marsh, pond, swamp or swamp thicket communities or clusters of these vegetation communities within the Project Location and ZOI.</td>
<td>No MAS, SAS, SAF or MAM communities are found at the Project Location or ZOI.</td>
<td>“Generalized Candidate SWH” in the ZOI is treated as significant.</td>
</tr>
<tr>
<td>Bald Eagle and Osprey nesting, Foraging, and Perching Habitat</td>
<td>Nests are associated with lakes, ponds, rivers or wetlands along forested shorelines, islands, or on structures over water.</td>
<td>The records review completed for the Project Location and ZOI did not identify known occurrences of Osprey or Bald Eagle nests within the Barlow Energy Solar Centre.</td>
<td>Searches for stick nests (active or not) as well as a general habitat assessment were conducted during wildlife habitat assessment surveys and ELC surveys at the Project Location and ZOI.</td>
<td>No stick nests were identified at the Project Location or in the ZOI.</td>
<td>“Generalized Candidate SWH”.</td>
</tr>
<tr>
<td>Woodland Raptor Nesting Habitat</td>
<td>All natural or conifer plantation woodland/forest stands combined >30ha and with >10ha of interior habitat. Interior habitat determined with a 200m buffer.</td>
<td>The records review did not identify any known woodland raptor nesting habitat at the Project Location or ZOI.</td>
<td>Searches for stick nests (active or not) as well as a general habitat assessment were conducted during wildlife habitat assessment surveys and ELC surveys at the Project Location and ZOI.</td>
<td>No stick nests were identified at the Project Location or in the ZOI.</td>
<td>“Generalized Candidate SWH”.</td>
</tr>
<tr>
<td>Turtle Nesting Areas</td>
<td>Exposed mineral soil (sand or gravel) areas</td>
<td>The records review did not identify any</td>
<td>ELC surveys were utilized to assess</td>
<td>No MAM, SAS, SAF, BOO or PEO</td>
<td>“Generalized Candidate SWH”.</td>
</tr>
</tbody>
</table>
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat 1</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeps and Springs</td>
<td>• Seeps/Springs are areas where ground water comes to the surface. Often they are found within headwater areas within forested habitats. Any forested ecosite within the headwater areas of a stream could have seeps/springs. Any forested area (with <25% meadow/field/pasture) within the headwaters of a stream or river system.</td>
<td>known turtle nesting habitat in the ZOI or Project Locations.</td>
<td>ELC Ecosites at the Project Location and ZOI that may support turtle nesting areas.</td>
<td>communities with exposed mineral soil areas were identified at the Project Location or ZOI.</td>
<td>ZOI is treated as significant.</td>
</tr>
<tr>
<td>Amphibian Breeding Habitat (Woodland)</td>
<td>• All Ecosites associated with these ELC Community Series: FOC, FOM, FOD, SWC, SWM, SWD. Presence of a wetland, lake, or pond (>500 m²) within or adjacent (within 120 m) to a woodland [no minimum size]. Some small wetlands may not be mapped and may be important breeding pools for amphibians. Woodlands with permanent ponds or those containing water in most years until mid-July are more likely to be used as breeding habitat.</td>
<td>The records review did not identify any known seeps and springs in the ZOI or Project Locations.</td>
<td>Searches for seeps and springs were conducted during ELC investigations. As the Project Study Area consists of cultivated agricultural cropland, the search for seeps and springs focused on the natural features (forested ecosites) within the ZOI of the Project Location.</td>
<td>No seeps or springs were identified at the Project Location or ZOI.</td>
<td>"Generalized Candidate SWH" in the ZOI is treated as significant.</td>
</tr>
<tr>
<td>Amphibian Breeding Habitat (Woodland)</td>
<td>• ELC Community Classes SW, MA, FE, BO, DA and SA that are isolated (>120 m) from woodland habitats. Bullfrogs require permanent water bodies with abundant emergent vegetation.</td>
<td>The records review did not identify any known woodland amphibian breeding habitat at the Project Location.</td>
<td>Natural vegetation communities with the potential to support amphibian breeding habitat (woodland) within the Project Location and ZOI were assessed during ELC surveys. Areas of standing water or areas which showed evidence of holding water through the spring (based on topography and vegetation) were identified.</td>
<td>No wetlands, lakes or ponds were identified at the Project Location.</td>
<td>"Generalized Candidate SWH" in the ZOI is treated as significant.</td>
</tr>
<tr>
<td>Amphibian Breeding Habitat (Wetland)</td>
<td>• ELC Community Classes SW, MA, FE, BO, DA and SA that are isolated (>120 m) from woodland habitats. Bullfrogs require permanent water bodies with abundant emergent vegetation.</td>
<td>The records review did not identify any known wetland amphibian breeding habitat at the Project Location or ZOI.</td>
<td>ELC surveys were utilized to assess features within the Project Location and ZOI that may support wetland amphibian breeding habitat. ELC surveys were used to identify</td>
<td>No wetland communities located >100 m from woodland habitats occurred at the Project Location or ZOI.</td>
<td></td>
</tr>
</tbody>
</table>
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat 1</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodland Area-Sensitive Bird Breeding Habitat</td>
<td>Where interior forest birds typically breed; large mature forest (>60 years old) that have >30 ha of interior habitat. Interior habitat determined with a 200 m buffer. All Ecosites associated with these ELC Community Series: FOC, FOM, FOD, SWC, SWM, SWD.</td>
<td>The records review did not identify any known woodland area-sensitive bird breeding habitat at the Project Location or ZOI.</td>
<td>ELC field surveys and GIS analysis were used to determine woodlots that occurred at the Project Location and ZOI that had >30 ha of interior habitat (>200 m from edge). Nest searched for Red-breasted Nuthatch, Veery, Blue-head Vireo, Black-throated Green Warbler, Blackburnian Warbler, Black-throated Blue Warbler, Ovenbird and Scarlet Tanager.</td>
<td>No FOC, FOM, FOD, SWC, SWM, SWD occur at the Project Location. No candidate wildlife habitat for woodland area-sensitive breeding bird habitat occurred at the Project Location. While sufficient interior habitat for woodland area-sensitive breeding bird species locate at the ZOI, forest and swamp communities occur and these communities have been identified as “Generalized Candidate SWH”.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

SPECIES OF CONSERVATION CONCERN

<table>
<thead>
<tr>
<th>Species</th>
<th>Candidate SWH Habitat</th>
<th>Habitat Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marsh Bird Breeding Habitat</td>
<td>All wetland habitats with shallow water and emergent aquatic vegetation are SWH. May include any of the following Community Types: Meadow Marsh (MAM), Shallow Aquatic (LA), Open Bog (BOO), Open Fen (FEO); or for Green Heron: Swamp (SW), Marsh (MA) and Meadow (CUM) Community Types. Green Heron’s habitat is present at the edge of water such as sluggish streams, ponds and marshes sheltered by shrubs and trees.</td>
<td>Swamp communities within the ZOI lack habitat to support marsh breeding birds. No marsh, swamp or shallow aquatic communities were identified at the Project Location or ZOI. No candidate wildlife habitat for marsh bird breeding habitat occurred at the Project Location or ZOI.</td>
</tr>
<tr>
<td>Open Country Bird Breeding Habitat</td>
<td>Grassland (which includes natural and cultural fields and meadow) areas > 30 ha, not Class 1 or Class 2 agricultural lands, with no row-cropping or hay or livestock pasturing in the last 5 years, in the following Community Type: Meadow (CUM).</td>
<td>No grassland communities were identified at the Project Location or ZOI. No candidate wildlife habitat for open country breeding bird habitat occurred at the Project Location or ZOI.</td>
</tr>
<tr>
<td>Shrub/Early Successional Bird Breeding Habitat</td>
<td>Large field areas succeeding to shrub and thicket habitats >10 ha, not Class 1 or Class 2 agricultural lands, with no row-cropping or intensive hay or livestock pasturing in the last 5 years, in the following Community Types: Thickets (CUT), Savannahs (CUS), or Woodlands (CUW). Shrub and thicket habitat sites considered significant should have a history of longevity, either abandoned fields or pastures/fields.</td>
<td>No field areas succeeding to shrub and thicket habitats >10 ha were identified at the Project Location. No candidate wildlife habitat for shrub/early successional breeding bird habitat occurred at the Project Location.</td>
</tr>
</tbody>
</table>

Note: SWH refers to Swamp and Wetland Habitats.
Special Concern and Rare Wildlife Species (i.e. All Special Concern and S1-S3 Species)

Candidate Wildlife Habitat

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial Crayfish</td>
<td>• Wet meadows and edges of shallow marshes (no minimum size) and in the following Community Types: Meadow Marsh (MAM1, MAM2, MAM3, MAM4, MAM5, MAM6), Shallow Marsh (MAS1, MAS2, MAS3) Deciduous Swamp (SWD), Thickel Swamp (SWT) and Mixed Swamp (SWM).</td>
<td>• The records review did not identify any known terrestrial crayfish habitat at the Project Location or ZOI, however, a review of aerial photography suggests marsh and swamp habitat might be present.</td>
<td>• Site investigations were conducted to assess the potential for habitats at the Project Location and ZOI to support terrestrial crayfish, through the delineation and verification of marsh communities by ELC.</td>
<td>• No MAM, MAS, SWD, SWT, SWM occur within the Project Location. No candidate wildlife habitat for terrestrial crayfish habitat occurred at the Project Location.</td>
<td>• "Generalized Candidate SWH" in the ZOI is treated as significant.</td>
</tr>
</tbody>
</table>

| Brainerd’s Hawthorn | • This shrub is drought tolerant. It is typically found within woodland habitats, with partial sun exposure. Optimal growing conditions include dry-fresh soils of loamy texture (Reznicek et al. 2011). | • The records review identified Brainerd’s hawthorn as being recorded historically within the regional area of the Project Location and ZOI. | • ELC-based habitat assessments for both plant and wildlife species of conservation concern as described in the Draft SWH Ecoregion 6E Criterion Schedule were used to determine the presence of candidate wildlife habitat for these species at the Project Location and ZOI. | • No woodland habitats at the Project Location. No candidate wildlife habitat for Brainerd’s hawthorn occurred at the Project Location. | • "Generalized Candidate SWH" in the ZOI is treated as significant. |

| Caughuawaga Hawthorn | • Occurs on abandoned farmland, along streams, and in forest openings, especially on soils high in calcium. Moderately shade-tolerant. Often forming thickets of several different species (Farrar, 1995). | • The records review identified caughuawaga hawthorn as being recorded historically within the regional area of the Project Location or ZOI. | • • | • No abandoned farmland, streams or forest habitats at the Project Location. | • "Generalized Candidate SWH" in the ZOI is treated as significant. |

| Snapping Turtle | • Occurs in a variety of wetlands with standing permanent water. Characteristics of optimal habitat for Snapping Turtle include slow-moving water with mud bottoms and dense aquatic vegetation. The Snapping Turtle usually occurs in large wetland or bodies of water, but can sometimes be encountered in small ponds or creeks. Nesting occurs in loose soils in close proximity to overwintering wetland habitat (COSEWIC, 2008). | • The records review identified Snapping Turtle as being recorded historically within the regional area of the Project Location or ZOI. | • • | • No wetland habitats at the Project Location. | • "Generalized Candidate SWH" in the ZOI is treated as significant. |

Note: Additional criteria and details are provided in the text for each species, including location and ZOI considerations, habitat specifics, and conservation status.
<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Map Turtle</td>
<td>The Northern Map Turtle is highly aquatic and inherits slow moving, large rivers and lakes with soft bottoms and abundant aquatic vegetation. Basking sites include rocks and deadheads adjacent to deep water (COSEWIC 2002). Nesting occurs in soft sand or soil and at a distance from the water. Hibernation is communal and occurs at the bottoms of lakes (MacCulloch, 2002).</td>
<td>The records review identified Northern Map Turtle as being recorded historically within the regional area of the Project Location or ZOI.</td>
<td>No large rivers or lakes communities were identified at the Project Location or ZOI. No candidate wildlife habitat for Northern Map Turtle occurred at the Project Location or ZOI.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Black-crowned Night Heron</td>
<td>Black-crowned Night Heron inhabits around both freshwater and saltwater habitats, including marshes, rivers, ponds, mangrove swamps, tidal flats and canals. It will nest in groves of trees, in thickets, or on ground, usually on islands (National Audubon Society, 2016).</td>
<td>The records review identified Black-crowned Night Heron as being recorded historically within the regional area of the Project Location or ZOI.</td>
<td>No wetland, open aquatic or thicket habitats at the Project Location. No candidate wildlife habitat for Black-crowned Night Heron occurred at the Project Location. Ponds and thicket habitats occurred at the ZOI. In accordance with Appendix D of the NHAG (MNRF, 2012) given the landscape and geography (specifically the ELC assessment) the Black-crowned Night Heron is considered to have the potential to occur. Its habitat is treated as existing and described as “Generalized Candidate SWH”.</td>
<td>“Generalized Candidate SWH” in the ZOI is treated as significant.</td>
<td></td>
</tr>
<tr>
<td>Common Nighthawk</td>
<td>Common Nighthawks nest on the ground in open habitats preferably with rocky or gravelled substrate. This could include sand dunes, beaches, logged areas, forest clearings and pastures (COSEWIC, 2007).</td>
<td>The records review identified Common Nighthawk as being recorded historically within the regional area of the Project Location or ZOI.</td>
<td>No open habitats with gravelled substrates such as sand dunes, beaches, logged areas, forest clearings and pastures were identified at the Project Location or ZOI. No candidate wildlife habitat for Common Nighthawk occurred at the Project Location or ZOI.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Eastern Wood Pewee</td>
<td>The Eastern Wood-Pewee inhabits deciduous and mixed woods. Nest-site selection favors open space near the nest, typically provided by clearings, roadways, water, and forest edges (Cadman et al, 2007).</td>
<td>The records review identified Eastern Wood Pewee as being recorded historically within the regional area of the Project Location or ZOI.</td>
<td>No forests occurred at the Project Location. No candidate wildlife habitat for Eastern Wood Pewee occurred at the Project Location. Deciduous and mixed forest habitats occurred at the ZOI. In accordance with Appendix D of the NHAG (MNRF, 2012) given the landscape and geography (specifically the ELC assessment) the Eastern Wood Pewee is considered to have the potential to occur. Its habitat is treated as existing and described as “Generalized Candidate SWH”.</td>
<td>“Generalized Candidate SWH” in the ZOI is treated as significant.</td>
<td></td>
</tr>
<tr>
<td>Great Black-backed Gull</td>
<td>The Great Black-backed Gull breeds in the Great Lakes and along the Atlantic coast of</td>
<td>The records review identified Great Black-backed Gull as being recorded</td>
<td>The Project Location and ZOI are not located along the Great Lakes or</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Table B1: Significant Wildlife Habitat Assessment

<table>
<thead>
<tr>
<th>Candidate Wildlife Habitat</th>
<th>Criteria for determining Candidate Significant Wildlife Habitat</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America from northern Québec to North Carolina. Nesting sites are usually within large open territories (Cadman, 2007).</td>
<td></td>
<td>Historically within the regional area of the Project Location or ZOI.</td>
<td>Atlantic Coast.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Egret</td>
<td>• The Great Egret will inhabit both freshwater and saltwater habitats. They nest high in trees, often on islands that are isolated (Cornell University, 2015).</td>
<td>• The records review identified Great Egrets as being recorded historically within the regional area of the Project Location or ZOI.</td>
<td>• The Project Location and ZOI are not located on an island.</td>
<td>• N/A</td>
<td></td>
</tr>
<tr>
<td>Wood Thrush</td>
<td>• The Wood Thrush inhabits deciduous woodlots of various sizes. Preferred habitat includes tall trees for singing perches and a thick understory for nesting (Cadman et al, 2007).</td>
<td>• The records review identified Wood Thrush as being recorded historically within the regional area of the Project Location or ZOI.</td>
<td>• No forests occurred at the Project Location. No candidate wildlife habitat for Wood Thrush occurred at the Project Location.</td>
<td>• Deciduous forest habitats occurred at the ZOI. In accordance with Appendix D of the NHAG (MNRF, 2012) given the landscape and geography (specifically the ELC assessment) the Wood Thrush is considered to have the potential to occur. Its habitat is treated as existing and described as “Generalized Candidate SWH”.</td>
<td>• "Generalized Candidate SWH" in the ZOI is treated as significant.</td>
</tr>
</tbody>
</table>

ANIMAL MOVEMENT CORRIDORS

<table>
<thead>
<tr>
<th>Animal Movement Corridor</th>
<th>Criteria for determining candidate significant wildlife habitat</th>
<th>Records Review Results</th>
<th>Site Investigation Methods</th>
<th>Site Investigation Results</th>
<th>Evaluation of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibian Movement Corridor</td>
<td>• Corridors may be found in all ecosites associated with water. Determined based on identifying significant amphibian breeding habitat (wetland).</td>
<td>• The records review did not identify any known amphibian movement corridor at the Project Location or ZOI.</td>
<td>• Identified after Amphibian Breeding Habitat - Wetland is confirmed. This criterion was applied to the candidate amphibian breeding habitat – wetland features using a combination of ELC mapping and GIS investigations to determine if candidate amphibian movement corridors are present.</td>
<td>• No wetland amphibian breeding habitat was identified at the Project Location in site investigations.</td>
<td>• N/A</td>
</tr>
<tr>
<td>Deer Movement Corridors</td>
<td>• Corridors may be found in all forested ecosites. Determined based on identifying significant deer wintering habitat.</td>
<td>• The records review did not identify any known deer movement corridors at the Project Location or ZOI.</td>
<td>• N/A</td>
<td>• N/A</td>
<td>• N/A</td>
</tr>
</tbody>
</table>
Table B2: Barlow Solar Energy Centre Site Investigation Record

<table>
<thead>
<tr>
<th>Survey Date</th>
<th>Completed By</th>
<th>Start Time (24Hr)</th>
<th>Weather Conditions*</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 7, 2016</td>
<td>C. Staples</td>
<td>9:00 - 16:30</td>
<td>19-22°C, 25-45 km/h wind, 50-100% cloud, light precipitation during survey, moderate precipitation in the last 24hrs</td>
</tr>
</tbody>
</table>

Table B3: Ecological Land Classification (ELC) Vegetation Types, Barlow Solar Energy Centre

<table>
<thead>
<tr>
<th>ELC TYPE</th>
<th>Community Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thicket (TH)</td>
<td></td>
</tr>
<tr>
<td>Deciduous Thicket (THD)</td>
<td></td>
</tr>
<tr>
<td>THDM2</td>
<td>Dry - Fresh Deciduous Shrub Thicket Ecosite</td>
</tr>
<tr>
<td></td>
<td>Thicket dominated by trembling aspen with white elm, Manitoba maple, as associates. Green ash was abundant in the understory, while species observed in the ground layer included alfalfa, oxeye daisy, strawberry, and various grasses.</td>
</tr>
<tr>
<td>Woodland (WO)</td>
<td></td>
</tr>
<tr>
<td>Deciduous Woodland (WOD)</td>
<td></td>
</tr>
<tr>
<td>WODM5</td>
<td>Fresh - Moist Deciduous Woodland Ecosite</td>
</tr>
<tr>
<td></td>
<td>Young community dominated by green ash and white elm in the canopy with green ash in the subcanopy. The understorey is dominated by common buckthorn with sweet bedstraw and various sedges documented in the ground layer.</td>
</tr>
<tr>
<td>Forest (FO)</td>
<td></td>
</tr>
<tr>
<td>Mixed Forest (FOM)</td>
<td></td>
</tr>
<tr>
<td>FOMM9</td>
<td>Fresh – Moist White Pine – Hardwood Mixed Forest Ecosite</td>
</tr>
<tr>
<td></td>
<td>White pine dominates this community, with green ash in the sub-canopy and swamp white oak in the understorey. The ground layer consisted of goldenrod and masses.</td>
</tr>
<tr>
<td>Deciduous Forest (FOD)</td>
<td></td>
</tr>
<tr>
<td>FODM7*</td>
<td>Fresh – Moist Lowland Deciduous Forest Type</td>
</tr>
<tr>
<td></td>
<td>Mid-age community dominated by silver maple with Manitoba maple, white elm, and willow species. Ground cover was comprised of dame’s rocket and goldenrod with associates of Virginia creeper and riverbank grape.</td>
</tr>
<tr>
<td>FODM8-3</td>
<td>Fresh - Moist Cottonwood Deciduous Forest Type</td>
</tr>
<tr>
<td></td>
<td>Mid-age community dominated by eastern cottonwood with an understory of green ash with red maple, white elm and white oak as associates. Jewelweed and sensitive fern dominate the ground layer.</td>
</tr>
<tr>
<td>Swamp (SW)</td>
<td></td>
</tr>
<tr>
<td>Deciduous Swamp (SWD)</td>
<td></td>
</tr>
<tr>
<td>SWDM1</td>
<td>Bur and white oak dominated swamp with green ash and largetooth aspen</td>
</tr>
</tbody>
</table>

* Visually assessed from edge of feature due to lack of access.
Table B3: Ecological Land Classification (ELC) Vegetation Types, Barlow Solar Energy Centre

<table>
<thead>
<tr>
<th>ELC TYPE</th>
<th>Community Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oak Mineral Deciduous Swamp Ecosite</td>
<td>associates in the sub-canopy. Green ash, oaks and Manitoba maple comprised the sparse understorey with jewelweed in the ground layer.</td>
</tr>
<tr>
<td>SWDM3 Maple Mineral Deciduous Swamp Ecosite</td>
<td>Mature silver maple and green ash swamp with black cherry as an associate, an understorey comprised of Hawthorn, and ground layer dominated by sensitive fern.</td>
</tr>
<tr>
<td>SWDO2 Organic Deciduous Swamp Ecosite</td>
<td>Mature silver maple swamp with green ash and basswood as associates in the canopy. Dominated by green ash in the sub-canopy with basswood and white oak as associates, and a ground layer dominated by sensitive fern.</td>
</tr>
<tr>
<td>Thicket Swamp (SWT)</td>
<td></td>
</tr>
<tr>
<td>SWT Thicket Swamp</td>
<td>Willow and green ash swamp thicket with occasional white elms scattered around the edges of the community. Sedges and grasses comprised the ground layer.</td>
</tr>
<tr>
<td>SWTMS Mineral Deciduous Thicket Swamp Ecosite</td>
<td>Thicket community with green ash and trembling aspen, narrow-leaved meadowsweet, goldenrod, and various grass species.</td>
</tr>
</tbody>
</table>

2 Organic ELC code designation based on LIO Records Review (Figure 1), attached to this report

* Visually assessed due to lack of access.

* Visually assessed due to lack of access.
Table B4: Site Investigation Results: Wetlands

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Total Feature Size (ha)</th>
<th>Project Component(s) located within 50 m (approximate closest point in parenthesis)</th>
<th>Distance to Project Location</th>
<th>ELC Community</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>we1</td>
<td>6.9</td>
<td>Solar Panel Area – adjacent (21 m)</td>
<td>Solar Panel Area – 12</td>
<td>FODM8-3</td>
<td>Mid-age community dominated by eastern cottonwood with green ash and trembling aspen. Sensitive fern and jewelweed comprised the ground layer. No surface water was observed in this community, although evidence of seasonal pooling was apparent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar Panel Area – 0 (adjacent)</td>
<td></td>
<td>Fresh-Moist Cottonwood Deciduous Forest</td>
<td></td>
</tr>
<tr>
<td>we2</td>
<td>0.5</td>
<td>Solar Panel Area – adjacent (10 m)</td>
<td>Solar Panel Area – 0 (adjacent)</td>
<td>FOMM9</td>
<td>This community was dominated by green ash with sensitive fern and jewelweed in the understorey. Wetter areas within the polygon contain dense mats of moneywort and red-osier dogwood was present in low amounts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fresh-Moist White Pine Hardwood Mixed Forest</td>
<td></td>
</tr>
<tr>
<td>we3</td>
<td>31.5</td>
<td>Solar Panel Area – adjacent (13 m)</td>
<td>Solar Panel Area – 12</td>
<td>SWDO2</td>
<td>This community was dominated by silver maple with green ash and basswood associates. Understory species include green ash, basswood, and bur oak, with sensitive fern and jewelweed in the shrub/herb layer. Evidence of seasonal pooling was apparent. A permanent pond is located in this community.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maple Organic Deciduous Swamp</td>
<td></td>
</tr>
<tr>
<td>Feature No.</td>
<td>Total Feature Size (ha)</td>
<td>Project Component(s) located within 50 m (approximate closest point in parenthesis)</td>
<td>Distance to Project Location</td>
<td>ELC Community</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SWDM3</td>
<td>Silver maple and green ash dominated with occasional black cherry in the canopy. Hawthorn and hazelnut shrubs are present in the understory with a ground layer dominated by sensitive fern with sedges, jack-in-the-pulpit and Virginia creeper as associates. No surface water was observed in this community, although evidence of seasonal pooling was evident.</td>
</tr>
<tr>
<td>SWTM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This community was dominated by narrow-leaved meadowsweet that also contains abundant green ash, goldenrod, occasional trees (hawthorn, trembling aspen). Ground cover was dominated by goldenrods and grasses without evidence of surface pooling or seasonal pooling.</td>
</tr>
<tr>
<td>we4</td>
<td>0.9</td>
<td>Parking/Laydown Area – adjacent (52 m)</td>
<td>Parking/Laydown Area – 35</td>
<td>FODM7</td>
<td>Located within the same ELC community type as we4, as described above. Divided by an upland thicket (transmission corridor).</td>
</tr>
<tr>
<td>we5</td>
<td>10.5</td>
<td>Point of Connection/ Connection on Line– adjacent (17 m)</td>
<td>Point of Connection/ Connection on Line – 11</td>
<td>FODM7</td>
<td>Located within the same ELC community type as we4, as described above. Divided by an upland thicket (transmission corridor).</td>
</tr>
</tbody>
</table>
Table B5: Site Investigation Results: Woodlands

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Feature Size (ha)</th>
<th>Project Component(s) located within 50 m (approximate closest point in parenthesis)</th>
<th>ELC Community Type(s)</th>
<th>Description</th>
<th>Attributes, Characteristics and Functions</th>
<th>Habitat Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo1</td>
<td>16.7</td>
<td>Solar Panel Area – adjacent (7 m) Solar Panel Area – 0 (adjacent) Parking/Laydown Area – 0 (adjacent)</td>
<td>WODM5 Fresh – Moist Tallgrass Deciduous Woodland</td>
<td>Young community dominated by green ash, with white elm in the canopy layer and dense understory shrubs; canopy openings were occupied by a variety of understory species, but Virginia creeper, common buckthorn, bedstraw and sedges were predominant. Hickory ash was also present in small amounts. Younger trees and advanced understory growth in the southern half of this polygon is most likely due to historical clearing activities.</td>
<td></td>
<td>This woodland feature is located north, northeast and east of the Project Location. It is bordered by thicket, with Cornwall Centre Road to the south. An old quarry road, a pond and vernal pooling was located within this woodland.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar Panel Area – adjacent (7 m) Solar Panel Area – 0 (adjacent) Parking/Laydown Area – 15 (32 m)</td>
<td>SWDM1 Oak Mineral Deciduous Swamp</td>
<td>This community was mixed with young and mature stands, and was dominated by green ash in the canopy layer, with occasional bur and white oak present. Sensitive fern and jewelweed are the dominant understory species, although wetter areas within the polygon contain dense mats of moneywort and reed-aspar dogwood was present in low amounts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar Panel Area – adjacent (7 m) Solar Panel Area – 0 (adjacent) Parking/Laydown Area – 15 (32 m)</td>
<td>FODM8-3 Fresh – Moist Cottonwood Deciduous Forest</td>
<td>Mid-age community dominated by eastern cottonwood with understory species that included dominated by green ash and trembling aspen. Understorey density is variable and dominated by sensitive fern and jewelweed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar Panel Area – adjacent (7 m) Solar Panel Area – 0 (adjacent) Parking/Laydown Area – 15 (32 m)</td>
<td>FODM9 Fresh-Moist White Pine Hardwood Mixed Forest</td>
<td>Mature community dominated white pine, with green ash in the subcanopy and swamp white oak in the understory along the edges. The understory was dense with white pine, green ash, silver maple, Virginia creeper and common buckthorn. The ground layer consisted of goldenrod and mosses, with rare occurrences of common burdock.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wo2</td>
<td>50.6</td>
<td>Solar Panel Area – adjacent (16 m) Solar Panel Area – 0 (adjacent) Parking/Laydown Area – 0 (adjacent)</td>
<td>SWDO2 Maple Organic Deciduous Swamp</td>
<td>Mature community dominated by silver maple with green ash and basswood associates. Understory species are represented by multiple dominant species, including green ash, basswood, bur oak, and sensitive fern and jewelweed dominate the ground layer.</td>
<td></td>
<td>This woodland feature is located northwest of the Project Location, and is bordered by thicket. A pond and vernal pooling was located within this woodland.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar Panel Area – adjacent (16 m) Solar Panel Area – 0 (adjacent) Parking/Laydown Area – 0 (adjacent)</td>
<td>SWDM3 Maple Mineral Deciduous Swamp</td>
<td>Mid-age/mature community dominated by silver maple and green ash with occasional black cherry tree in the canopy. Hawthorn and hazelnut shrubs are present in the understory, and the ground layer was dominated by sensitive fern with tall sedges, jack-in-the-pulpit and Virginia creeper associates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wo3</td>
<td>4.9</td>
<td>Parking/Laydown Area – adjacent (32 m) Parking/Laydown Area – 15 (32 m)</td>
<td>SWDM3 Maple Mineral Deciduous Swamp</td>
<td>Mid-age/mature community dominated by silver maple and green ash with occasional black cherry tree in the canopy. Hawthorn and hazelnut shrubs are present in the understory, and the ground layer was dominated by sensitive fern with tall sedges, jack-in-the-pulpit and Virginia creeper associates. An organic deciduous swamp inclusion was located within the feature.</td>
<td></td>
<td>This woodland feature is located southwest of the Project Location. It is bordered by thicket, with Cornwall Centre Road to the south.</td>
</tr>
</tbody>
</table>
Table B5: Site Investigation Results: Woodlands

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Feature Size (ha)</th>
<th>Project Component(s) located within 50 m (approximate closest point in parenthesis)</th>
<th>ELC Community Type(s)</th>
<th>Description</th>
<th>Attributes, Characteristics and Functions</th>
<th>Habitat Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo4</td>
<td>0.9</td>
<td>Parking/Laydown Area – adjacent (52 m)</td>
<td>FODM7</td>
<td>Mid-age community with a canopy abundant with silver maple, white elm, Manitoba maple, and willow species. In the understory layer, dame’s rocket and goldenrod species appeared abundant with associates of Virginia creeper and riverbank grape.</td>
<td>This woodland feature is located south of the Project Location. It is a small, isolate woodland bordered by railroad and thicket, with Cornwall Centre Road to the north.</td>
<td>Does not provide woodland interior habitat (200 m from the edge) or breeding bird interior habitat (200 m from edge).</td>
</tr>
<tr>
<td>wo5</td>
<td>10.5</td>
<td>Point of Connection/Connection on Line – adjacent (17 m)</td>
<td>FODM7</td>
<td>Mid-age community with a canopy abundant with silver maple, white elm, Manitoba maple, and willow species. In the understory layer, dame’s rocket and goldenrod species appeared abundant with associates of Virginia creeper and riverbank grape.</td>
<td>This woodland feature is located southeast of the Project Location. It is border by railroad and thicket, with Cornwall Centre Road to the north.</td>
<td>Does not provide woodland interior habitat (200 m from the edge) or breeding bird interior habitat (200 m from edge).</td>
</tr>
<tr>
<td>Wetland #</td>
<td>Size (ha)</td>
<td>Wetland Type</td>
<td>Site Type</td>
<td>Vegetation from soil, bed, or bottom</td>
<td>Proximity to other wetlands</td>
<td>Flood Attenuation</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>we 1</td>
<td>6.9</td>
<td>Swamp</td>
<td>Palustrine</td>
<td>h*, t*, gc, ne</td>
<td>11m from we02</td>
<td>Mid-reach; 9 hectare</td>
</tr>
<tr>
<td>we 2</td>
<td>0.5</td>
<td>Swamp</td>
<td>Palustrine</td>
<td>c*, h*, t*, m</td>
<td>11m from we01</td>
<td>Mid-reach; 1 hectare</td>
</tr>
<tr>
<td>we 3</td>
<td>31.5</td>
<td>Swamp</td>
<td>Palustrine</td>
<td>h*, t*, gc, ne</td>
<td>13m from we02</td>
<td>Mid-reach; 138 hectare</td>
</tr>
<tr>
<td>we 4</td>
<td>0.9</td>
<td>Swamp</td>
<td>Palustrine</td>
<td>h*, t*, gc</td>
<td>28m from we05</td>
<td>Mid-reach; 2 hectare</td>
</tr>
<tr>
<td>we 5</td>
<td>10.5</td>
<td>Swamp</td>
<td>Riverine</td>
<td>h*, t*, gc</td>
<td>28m from we04</td>
<td>Mid-reach; 360 hectare</td>
</tr>
<tr>
<td>Feature #</td>
<td>Size (ha)</td>
<td>Interior Habitat</td>
<td>Proximity to other significant woodlands/habitats</td>
<td>Linkages 4</td>
<td>Water Protection 5</td>
<td>Diversity 6</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>------------------</td>
<td>---</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>wo01</td>
<td>16.7 - N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>wo02</td>
<td>50.6 - Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>wo03</td>
<td>4.9 - N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>wo04</td>
<td>0.9 - N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>wo05</td>
<td>10.5 - N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

1 Considered significant if ≥50 ha based on the woodland size criteria standards within the Natural Heritage Assessment Guide for Renewable Energy Projects (MNR, 2012).
2 Considered significant if any interior habitat is present (i.e., woodland has ≥8 ha interior forest measured 100 m from the edge) (MNR, 2012).
3 Considered significant if located within 30 m from another natural feature or fish habitat, and ≥10 ha (MNR, 2012).
4 Considered significant if located within 120 m of two other significant features, and ≥10 ha (MNR, 2012).
5 Considered significant if located within 50 m of groundwater discharge, recharge, headwater area, watercourse or fish habitat, and ≥4 ha (MNR, 2012).
6 Considered significant if contains native, naturally occurring vegetation types, and ≥10 ha (MNR, 2012).
7 Considered significant if contains a rare (S1-S3) vegetation community, rare plant habitat, and ≥4 ha (MNR, 2012).
Table B.8: Monitoring Plan

<table>
<thead>
<tr>
<th>Potential Negative Effect</th>
<th>Mitigation Strategy</th>
<th>Performance Objective</th>
<th>Monitoring Plan Methods</th>
<th>Location</th>
<th>Frequency</th>
<th>Rationale</th>
<th>Reporting</th>
<th>Contingency Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust generation, sedimentation and erosion during construction to wetland and woodland habitats</td>
<td>Silt barriers to be erected along wetland and woodland edges that occur within 30 m of construction work</td>
<td>Silt barriers to remain in good repair</td>
<td>Visual inspection of silt barriers</td>
<td>All silt barriers</td>
<td>Weekly</td>
<td>n/a</td>
<td>Monthly</td>
<td>Repair any gaps or holes in silt barriers</td>
</tr>
<tr>
<td>Disturbance and encroachment into natural features during construction</td>
<td>Limits of vegetation clearing to be staked in the field</td>
<td>No clearing beyond staked limits</td>
<td>Visual inspections to ensure stakes are present and works stay within demarcated areas</td>
<td>All areas requiring removal of vegetation</td>
<td>Weekly</td>
<td>n/a</td>
<td>Monthly</td>
<td>Replace any missing stakes</td>
</tr>
<tr>
<td>Contamination of natural heritage features through accidental spill</td>
<td>Proper storage of materials off-site in storage containers</td>
<td>Minimize likelihood of spill</td>
<td>Visual inspections to ensure proper storage</td>
<td>Storage areas</td>
<td>Weekly</td>
<td>n/a</td>
<td>Monthly</td>
<td>Follow-up monitoring /inspections in the event of an accidental spill/leak</td>
</tr>
<tr>
<td></td>
<td>Adherence to Emergency Response Plan</td>
<td>Contain spill material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Remedial actions may be required in the event monitoring indicates a negative effect to natural features</td>
</tr>
</tbody>
</table>
APPENDIX C:
BACKGROUND WILDLIFE LIST
<table>
<thead>
<tr>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>ONTARIO STATUS</th>
<th>GLOBAL STATUS</th>
<th>COSSARO</th>
<th>COSEWIC</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPHIBIANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mudpuppy</td>
<td>Necturus maculosus</td>
<td>S4</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OHA</td>
</tr>
<tr>
<td>Red-spotted Newt</td>
<td>Notophthalmus viridescens</td>
<td>S5</td>
<td>G5T5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Toad</td>
<td>Anaxyrus americanus</td>
<td>S5</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraploid Gray Treefrog</td>
<td>Hyla versicolor</td>
<td>S5</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Chorus Frog (carolinian)</td>
<td>Pseudacris triseriata</td>
<td>S4</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OHA</td>
</tr>
<tr>
<td>Spring Peeper</td>
<td>Pseudacris crucifer</td>
<td>S5</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bullfrog</td>
<td>Lithobates catesbeiana</td>
<td>S4</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Green Frog</td>
<td>Lithobates clamitans</td>
<td>S5</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Frog</td>
<td>Lithobates sylvatica</td>
<td>S5</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Leopard Frog</td>
<td>Lithobates pipiens</td>
<td>S5</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OHA</td>
</tr>
<tr>
<td>REPTILES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snapping Turtle</td>
<td>Chelydra serpentina</td>
<td>S3</td>
<td>G5</td>
<td>SC</td>
<td>SC</td>
<td>OHA/MNRF</td>
</tr>
<tr>
<td>Midland Painted Turtle</td>
<td>Chrysemys picta marginata</td>
<td>S5</td>
<td>G5T5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Map Turtle</td>
<td>Graptemys geographica</td>
<td>S3</td>
<td>G5</td>
<td>SC</td>
<td>SC</td>
<td>OHA</td>
</tr>
<tr>
<td>Blanding's Turtle</td>
<td>Emydoidea blandingi</td>
<td>S3</td>
<td>G4</td>
<td>THR</td>
<td>THR</td>
<td>MNRF</td>
</tr>
<tr>
<td>Eastern Gartersnake</td>
<td>Thamnophis sirtalis</td>
<td>S5</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redbelly Snake</td>
<td>Storeria occipitomaculata</td>
<td>S5</td>
<td>G5</td>
<td>OHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada Goose</td>
<td>Branta canadensis</td>
<td>S5</td>
<td>G5</td>
<td>OBBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Black Duck</td>
<td>Anas rubripes</td>
<td>S4</td>
<td>G5</td>
<td>OBBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard</td>
<td>Anas platyrhynchos</td>
<td>S5</td>
<td>G5</td>
<td>OBBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruffed Grouse</td>
<td>Bonasa umbellus</td>
<td>S5</td>
<td>G5</td>
<td>OBBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Loon</td>
<td>Gavia immer</td>
<td>S5B,S5N</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OBBA</td>
</tr>
<tr>
<td>Double-crested Cormorant</td>
<td>Phalacrocorax auritus</td>
<td>S5B</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OBBA</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>ONTARIO STATUS</td>
<td>GLOBAL STATUS</td>
<td>COSSARO</td>
<td>COSEWIC</td>
<td>Source</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Least Bittern</td>
<td>Ixobrychus exilis</td>
<td>S4B</td>
<td>G5</td>
<td>THR</td>
<td>THR</td>
<td>OBBA/MNRF</td>
</tr>
<tr>
<td>Great Blue Heron</td>
<td>Ardea herodias</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Great Egret</td>
<td>Ardea alba</td>
<td>S2B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Green Heron</td>
<td>Butorides virescens</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Black-crowned Night-Heron</td>
<td>Nycticorax nycticorax</td>
<td>S3B,S3N</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Turkey Vulture</td>
<td>Cathartes aura</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
<td>S4B</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OBBA</td>
</tr>
<tr>
<td>Cooper's Hawk</td>
<td>Accipiter cooperii</td>
<td>S4</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OBBA</td>
</tr>
<tr>
<td>Broad-winged Hawk</td>
<td>Buteo platypterus</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Red-tailed Hawk</td>
<td>Buteo jamaicensis</td>
<td>S5</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OBBA</td>
</tr>
<tr>
<td>American Kestrel</td>
<td>Falco sparverius</td>
<td>S4B, S5N</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Killdeer</td>
<td>Charadrius vociferus</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Spotted Sandpiper</td>
<td>Actitis macularia</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Wilson's Snipe</td>
<td>Gallinago delicata</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Ring-billed Gull</td>
<td>Larus delawarensis</td>
<td>S5B,S4N</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Herring Gull</td>
<td>Larus argentatus</td>
<td>S5B,S5N</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Great Black-backed Gull</td>
<td>Larus marinus</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Common Tern</td>
<td>Sterna hirundo</td>
<td>S4B</td>
<td>G5</td>
<td>NAR</td>
<td>NAR</td>
<td>OBBA</td>
</tr>
<tr>
<td>Rock Pigeon</td>
<td>Columba livia</td>
<td>SNA</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Mourning Dove</td>
<td>Zenaida macroura</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Common Nighthawk</td>
<td>Chordeiles minor</td>
<td>S4B</td>
<td>G5</td>
<td>SC</td>
<td>THR</td>
<td>OBBA</td>
</tr>
<tr>
<td>Eastern Whip-poor-will</td>
<td>Antrostomus vociferus</td>
<td>S4B</td>
<td>G5</td>
<td>THR</td>
<td>THR</td>
<td>MNRF</td>
</tr>
<tr>
<td>Chimney Swift</td>
<td>Chaetura pelagica</td>
<td>S4B,S4N</td>
<td>G5</td>
<td>THR</td>
<td>THR</td>
<td>OBBA</td>
</tr>
<tr>
<td>Ruby-throated Hummingbird</td>
<td>Archilochus colubris</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Belted Kingfish</td>
<td>Ceryle alcyon</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>ONTARIO STATUS</td>
<td>GLOBAL STATUS</td>
<td>COSSARO</td>
<td>COSEWIC</td>
<td>Source</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Downy Woodpecker</td>
<td>Picoides pubescens</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Hairy Woodpecker</td>
<td>Picoides villosus</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Northern Flicker</td>
<td>Colaptes auratus</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Eastern Wood-Pewee</td>
<td>Contopus virens</td>
<td>S4B</td>
<td>G5</td>
<td>SC</td>
<td>SC-NS</td>
<td>OBBA</td>
</tr>
<tr>
<td>Alder Flycatcher</td>
<td>Empidonax alnorum</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Willow Flycatcher</td>
<td>Empidonax traillii</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Least Flycatcher</td>
<td>Empidonax minimus</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Eastern Phoebe</td>
<td>Sayornis phoebe</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Great Crested Flycatcher</td>
<td>Myiarchus crinitus</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Eastern Kingbird</td>
<td>Tyrannus tyrannus</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Blue-headed Vireo</td>
<td>Vireo solitarius</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Warbling Vireo</td>
<td>Vireo gilvus</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Red-eyed Vireo</td>
<td>Vireo olivaceus</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Blue Jay</td>
<td>Cyanocitta cristata</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>American Crow</td>
<td>Corvus brachyrhynchos</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Horned Lark</td>
<td>Eremophil a paestris</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Purple Martin</td>
<td>Progne subis</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Tree Swallow</td>
<td>Tachycineta bicolor</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Northern Rough-winged Swallow</td>
<td>Stelgidopteryx serripennis</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Bank Swallow</td>
<td>Riparia riparia</td>
<td>S4B</td>
<td>G5</td>
<td>THR</td>
<td>THR-NS</td>
<td>OBBA</td>
</tr>
<tr>
<td>Cliff Swallow</td>
<td>Petrochelidon pyrrhonota</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Barn Swallow</td>
<td>Hirundo rustica</td>
<td>S4B</td>
<td>G5</td>
<td>THR</td>
<td>THR-NS</td>
<td>OBBA/MNRF</td>
</tr>
<tr>
<td>Black-capped Chickadee</td>
<td>Poecile atricapillus</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Red-breasted Nuthatch</td>
<td>Sitta canadensis</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>White-breasted Nuthatch</td>
<td>Sitta carolinensis</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>ONTARIO STATUS</td>
<td>GLOBAL STATUS</td>
<td>COSSARO</td>
<td>COSEWIC</td>
<td>Source</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>House Wren</td>
<td>Troglodytes aedon</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Marsh Wren</td>
<td>Cistothorus palustris</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Veery</td>
<td>Catharus fuscensens</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Wood Thrush</td>
<td>Hylocichla mustelina</td>
<td>S4B</td>
<td>G5</td>
<td>SC</td>
<td>THR-NS</td>
<td>OBBA</td>
</tr>
<tr>
<td>American Robin</td>
<td>Turdus migratorius</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Gray Catbird</td>
<td>Dumetella carolinensis</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Brown Thrasher</td>
<td>Toxostoma rufum</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>European Starling</td>
<td>Sturnus vulgaris</td>
<td>SNA</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Cedar Waxwing</td>
<td>Bombycilla cedrorum</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Ovenbird</td>
<td>Seiurus aurocapilla</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Northern Waterthrush</td>
<td>Parkesia noveboracensis</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Black-and-white Warbler</td>
<td>Mniotilta varia</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Nashville Warbler</td>
<td>Oreothlypis ruficapilla</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Mourning Warbler</td>
<td>Geothlypis philadelphia</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Common Yellowthroat</td>
<td>Geothlypis trichas</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>American Redstart</td>
<td>Setophaga ruticilla</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Cerulean Warbler</td>
<td>Dendroica cerulea</td>
<td>S3B</td>
<td>G4</td>
<td>THR</td>
<td>END</td>
<td>MNRF</td>
</tr>
<tr>
<td>Magnolia Warbler</td>
<td>Setophaga magnolia</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Yellow Warbler</td>
<td>Setophaga petechia</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Chestnut-sided Warbler</td>
<td>Setophaga pensylvanica</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Black-throated Blue Warbler</td>
<td>Setophaga caerulescens</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Pine Warbler</td>
<td>Setophaga pinus</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Black-throated Green Warbler</td>
<td>Setophaga virens</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Chipping Sparrow</td>
<td>Spizella passerina</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Clay-colored Sparrow</td>
<td>Spizella pallida</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>COMMON NAME</td>
<td>SCIENTIFIC NAME</td>
<td>ONTARIO STATUS</td>
<td>GLOBAL STATUS</td>
<td>COSSARO</td>
<td>COSEWIC</td>
<td>Source</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Savannah Sparrow</td>
<td>Passerculus sandwichensis</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Song Sparrow</td>
<td>Melospiza melodia</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Swamp Sparrow</td>
<td>Melospiza georgiana</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>White-throated Sparrow</td>
<td>Zonotrichia albicollis</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Scarlet Tanager</td>
<td>Piranga olivacea</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Northern Cardinal</td>
<td>Cardinalis cardinalis</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Rose-breasted Grosbeak</td>
<td>Pheucticus ludovicianus</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Indigo Bunting</td>
<td>Passerina cyanea</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Bobolink</td>
<td>Dolichonyx oryzivorus</td>
<td>S4B</td>
<td>G5</td>
<td>THR</td>
<td>THR-NS</td>
<td>NHIC/MNRF</td>
</tr>
<tr>
<td>Red-winged Blackbird</td>
<td>Agelaius phoeniceus</td>
<td>S4</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Eastern Meadowlark</td>
<td>Sturnella magna</td>
<td>S4B</td>
<td>G5</td>
<td>THR</td>
<td>THR-NS</td>
<td>OBBA/MNRF</td>
</tr>
<tr>
<td>Common Grackle</td>
<td>Quiscalus quiscula</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Brown-headed Cowbird</td>
<td>Molothrus ater</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Baltimore Oriole</td>
<td>Icterus galbula</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>Purple Finch</td>
<td>Haemorhouspurpureus</td>
<td>S4B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>House Finch</td>
<td>Haemorhous mexicanus</td>
<td>SNA</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>American Goldfinch</td>
<td>Carduelis tristis</td>
<td>S5B</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>House Sparrow</td>
<td>Passer domesticus</td>
<td>SNA</td>
<td>G5</td>
<td></td>
<td></td>
<td>OBBA</td>
</tr>
<tr>
<td>MAMMALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Brown Myotis</td>
<td>Myotis lucifugus</td>
<td>S4</td>
<td>G5</td>
<td>END</td>
<td>END</td>
<td>OMA/MNRF</td>
</tr>
<tr>
<td>Northern Myotis</td>
<td>Myotis septentrionalis</td>
<td>S3?</td>
<td>G4</td>
<td>END</td>
<td>END</td>
<td>OMA/MNRF</td>
</tr>
<tr>
<td>Big Brown Bat</td>
<td>Eptesicus fuscus</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OMA</td>
</tr>
<tr>
<td>Woodchuck</td>
<td>Marmota monax</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OMA</td>
</tr>
<tr>
<td>Grey Squirrel</td>
<td>Sciurus carolinensis</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OMA</td>
</tr>
<tr>
<td>Red Squirrel</td>
<td>Tamiasciurus hudsonicus</td>
<td>S5</td>
<td>G5</td>
<td></td>
<td></td>
<td>OMA</td>
</tr>
</tbody>
</table>

Stantec
<table>
<thead>
<tr>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>ONTARIO STATUS</th>
<th>GLOBAL STATUS</th>
<th>COSSARO</th>
<th>COSEWIC</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaver</td>
<td>Castor canadensis</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-footed Mouse</td>
<td>Peromyscus leucopus</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muskrat</td>
<td>Ondatra zibethicus</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway Rat</td>
<td>Rattus norvegicus</td>
<td>SNA</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadow Jumping Mouse</td>
<td>Zapus hudsonicus</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcupine</td>
<td>Erethizon dorsatum</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coyote</td>
<td>Canis latrans</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Fox</td>
<td>Vulpes vulpes</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td>Procyon lotor</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher</td>
<td>Martes pennanti</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink</td>
<td>Mustela vison</td>
<td>S4</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striped Skunk</td>
<td>Mephitis mephitis</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-tailed Deer</td>
<td>Odocoileus virginianus</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moose</td>
<td>Alces alces</td>
<td>S5</td>
<td>G5</td>
<td>OMA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY

Total Amphibians: 10
Total Reptiles: 6
Total Birds: 99
Total Mammals: 20
SIGNIFICANT SPECIES

Global (G1-G3): 0
National: (SC, THR, END): 16
Provincial (SC, THR, END): 16

Explanation of Status and Acronyms

COSSARO: Committee on the Status of Species at Risk in Ontario
COSEWIC: Committee on the Status of Endangered Wildlife in Canada
REGION: Rare in a Site Region
S1: Critically Imperiled—Critically imperiled in the province (often 5 or fewer occurrences)
S2: Imperiled—Imperiled in the province, very few populations (often 20 or fewer),
S3: Vulnerable—Vulnerable in the province, relatively few populations (often 80 or fewer)
S4: Apparently Secure—Uncommon but not rare
S5: Secure—Common, widespread, and abundant in the province
SX: Presumed extirpated
SH: Possibly Extirpated (Historical)
SNR: Unranked
SU: Unrankable—Currently unrankable due to lack of information
SNA: Not applicable—A conservation status rank is not applicable because the species is not a suitable target for conservation activities.
S#S#: Range Rank—A numeric range rank (e.g., S2S3) is used to indicate any range of uncertainty about the status of the species
S#B- Breeding status rank
S#N- Non Breeding status rank
?: Indicates uncertainty in the assigned rank
G1: Extremely rare globally; usually fewer than 5 occurrences in the overall range
G1G2: Extremely rare to very rare globally
G2: Very rare globally; usually between 5-10 occurrences in the overall range
G2G3: Very rare to uncommon globally
G3: Rare to uncommon globally; usually between 20-100 occurrences
G3G4: Rare to common globally
G4: Common globally; usually more than 100 occurrences in the overall range
G4G5: Common to very common globally
G5: Very common globally; demonstrably secure
GU: Status uncertain, often because of low search effort or cryptic nature of the species; more data needed.
GNR: Unranked—Global rank not yet assessed.
T: Denotes that the rank applies to a subspecies or variety
Q: Denotes that the taxonomic status of the species, subspecies, or variety is questionable.
END: Endangered
THR: Threatened
SC: Special Concern
2, 3 or NS after a COSEWIC ranking indicates the species is either on Schedule 2, Schedule 3 or No Schedule of the Species At Risk Act (SARA)
NAR: Not At Risk

LATEST STATUS UPDATE

Amphibians: July 2014
Reptiles: April 2015
Birds: January 2016
Mammals: January 2016
S and G ranks and explanations: December 2011

NOTE

All rankings for birds refer to breeding birds unless the ranking is followed by N

REFERENCES

COSSARO Status

COSEWIC Status

OBBA: Ontario Breeding Bird Atlas

OHA: Ontario Herpetofauna Atlas

OMA: Ontario Mammal Atlas

APPENDIX D: FIELD FORMS
POLYGON DESCRIPTION

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>ORGANIC</th>
<th>SUBSTRATE</th>
<th>ORGANIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>.crop</td>
<td>LACOSTRINE</td>
<td>LILEM</td>
<td>RIVERINE</td>
</tr>
<tr>
<td>TERRNL</td>
<td>BOTTOMLAND</td>
<td>TABLELAND</td>
<td>BUMP-SLOPE</td>
</tr>
<tr>
<td>WETLND</td>
<td>BOATLAND</td>
<td>ROLL UPLAND</td>
<td>CLIFF</td>
</tr>
<tr>
<td>AQUATIC</td>
<td>DUG</td>
<td>TUSC</td>
<td>CREVICE/CAVE</td>
</tr>
<tr>
<td>SITE</td>
<td>CARB BEDR</td>
<td>COVER</td>
<td>OPEN SHRUB</td>
</tr>
<tr>
<td>OPEN WATER</td>
<td>SHALLOW WATER</td>
<td>BASIC BEDR</td>
<td>TREED</td>
</tr>
<tr>
<td>SURFICIAL DEP</td>
<td>BEDROCK</td>
<td>COVER</td>
<td>TREED</td>
</tr>
</tbody>
</table>

STAND DESCRIPTION:

<table>
<thead>
<tr>
<th>LAYER</th>
<th>HT</th>
<th>CVR</th>
<th>SPECIES IN ORDER OF DECREASING DOMINANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANOPY</td>
<td>2</td>
<td>3</td>
<td>Green ash > Other spp</td>
</tr>
<tr>
<td>SUB-CANOPY</td>
<td>3</td>
<td>3</td>
<td>Green ash > Other spp</td>
</tr>
<tr>
<td>UNDERSTORY</td>
<td>3-4</td>
<td></td>
<td>Common buckthorn</td>
</tr>
<tr>
<td>GRD. LAYER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOIL ANALYSIS:

<table>
<thead>
<tr>
<th>TEXTURE</th>
<th>DEPTH TO MOTTLES/GLEY</th>
<th>g=</th>
<th>g=</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOISTURE</td>
<td>DEPTH OF ORGANICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMOGENEOUS/</td>
<td>DEPTH TO BEDROCK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMUNITY CLASSIFICATION:

<table>
<thead>
<tr>
<th>COMMUNITY</th>
<th>CODE</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Evidence of clearing, subseq denser shrub layers, smaller deciduous trees in south half.
- Soil mounds from ditching, road edge influence.

Print Name: Ceryne Strudler

Quality Control: This form is complete & legible.

Signature:

Field Notes QA/QC personnel
Wildlife Habitat Assessment Form

Project Number: 200956.B79
Polygon No.:
Assessment Type: Q-Visual no access/Q-Entire: walk through feature/Q-Partial access (Indicate on map)
Weather Conditions:
- **TEMP (°C):** 19-22
- **WIND:** 13-36 km/ hr
- **CLOUD:** 50%
- **PPT:** 0
- **PPT (last 24 hrs):** 0

WildLife Habitat Type & Description

<table>
<thead>
<tr>
<th>Wildlife Habitat Type & Description</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bat Hibernacula: Caves, abandoned mines, underground foundations, karst features</td>
<td>Size of opening(s)</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedrock Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth of feature (if possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td>Occasional (1-2) rodent burrows observed in feature; possum increase along road fill</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size of opening(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows</td>
<td>Size of burrow</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of burrows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slick Nest: Slick nests found in any forest/woodland/swamp, includes heron colonies and bald eagle/owls/other raptor nests</td>
<td>Tree species</td>
<td>None observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nest size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Number of features</td>
<td>None observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Sub/emergent veg present</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrubs/logs at edge present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Feature size (diameter)</td>
<td>None w/ feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate of water body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SA/BOO/P E (note if man-made)</td>
<td>Type of substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance to wetland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size of feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys</td>
<td>Number of chimneys</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES & SPECIES OBSERVATIONS

- **Anurans:**
 - *Amphibians*
 - *Bugs:*
 - Leopord frog (OB-adult, tadpole)
 - Bullfrog (photo: 2070, tadpole)
- **Birds:**
 - *Birds:*
 - *Carrion*
 - *Coffee*
 - *Hawks:*
 - *Hawks:*
 - *Jays:*
 - *Kites:*
 - *Quails:*
 - *Red-tail:*
 - *Sparrows:*
 - *Swallows:*
 - *Wrens:*
 - *Woodpeckers:*

CA=carcass; DP=distinctive parts; FE=feeding evidence; FY=eggs/nest; HO=house/den; OB=observed; SC=scat; Sl=other sign; Tl=track; VO=vocalization.
STAND DESCRIPTION

<table>
<thead>
<tr>
<th>LAYER</th>
<th>HT</th>
<th>CVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CANOPY</td>
<td>4</td>
<td>Eastern Cottonwood</td>
</tr>
<tr>
<td>2 SUB-CANOPY</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3 UNDERSTOREY</td>
<td>4</td>
<td>Green ash, Red maple, Red oak, Black locust</td>
</tr>
<tr>
<td>4 GRD. LAYER</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

HT CODES:
- 1x2.5m
- 2x10 HT: 2.5m
- 3x2 HT: 5m
- 4x1 HT: 5m
- 5x0.5 HT: 5m
- 6x0.2 HT: 0.5m
- 7xHT: 0.2m

CVR CODES:
- 0=NONE
- 1=0-5%
- 2=10-25%
- 3=25-50%
- 4=50%

STAND COMPOSITION:
- BA:

SOIL ANALYSIS:
- TEXTURE: DEPTH TO MOTTLES/GLEY
- MOISTURE: DEPTH OF ORGANICS:
- HOMOGENEOUS / VARIABLE: DEPTH TO BEDROCK:

COMMUNITY CLASSIFICATION:
- COMMUNITY CLASS: CODE:
- COMMUNITY SERIES: CODE:
- ECOSITE: CODE:
- VEGETATION TYPE: CODE:

INCLUSION:
- CODE:

COMPLEX:
- CODE:

Notes:
- Some drying water pools present (photo 1999)
- Cottonwoods are mature, decay present consistently in stand, potential but roasting colony.
Wildlife Habitat Assessment Form

NOTES & SPECIES OBSERVATIONS (list species and type of observation, indicate on map):
- **Gryps**
- **REV1** (Vo)
- **VEER** (Vo)
- **YBCU** (Vo)
- White-throated sparrow (chir, chir, chir)

CA=carcass; DP=distinctive parts; FE=feeding evidence; Fy=eggs/nest; HO=house/den;
OB=observed; SC=scaf, Sl=other sign, Tk=track; Vc=vocalization

Wildlife Habitat Type & Description

<table>
<thead>
<tr>
<th>Wildlife Habitat Type & Description</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bat Hibernacula: Caves, abandoned mines, underground foundations, karst features</td>
<td>Size of opening(s)</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td>None observed in feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td>None observed in feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows</td>
<td>Size of burrow</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slick Nests: Slick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/osprey/other raptor nests</td>
<td>Number of burrows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slick Nests: Slick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/osprey/other raptor nests</td>
<td>Tree species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slick Nests: Slick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/osprey/other raptor nests</td>
<td>Nest size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Number of features</td>
<td>~5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Feature size (diameter)</td>
<td>Small (~2 x 3 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Sub/emergent veg present</td>
<td>Yes (logs) - 10-15 cm dia, partial to semi-decomposed (4th soil @ Site #1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Shrubs/logs at edge present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Feature size (diameter)</td>
<td>none observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Substrate of water body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SA/BOO/FEO (note if man-made)</td>
<td>Type of substrate</td>
<td>none observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SA/BOO/FEO (note if man-made)</td>
<td>Distance to wetland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SA/BOO/FEO (note if man-made)</td>
<td>Size of feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys</td>
<td>Number of chimneys</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality Control: This form is complete & legible.
Signatures:

Print Name: *(Redacted)*
Signature: *(Redacted)*

Page 2 of 2
Page 1 of 2

Caryn Staples
(Notes: [Field Notes Author])

Quality Control: This form is complete □ & legible □

Signature: ____________________________
(Notes: QA/QC personnel)
Wildlife Habitat Assessment Form

NOTES & SPECIES OBSERVATIONS (list species and type of observation, indicate on map):
- **Birds**
 - Magnets
 - Insects
- **Mammals**
 - Mice
 - Deer (O, SC)
 - Coyote (Canis latrans)
 - Wolf (C, V)

Weather Conditions:
- TEMP (°C): 21
- WND: 20km/hr
- CLOUD: 100%
- PPT: 0
- PPT (last 24 hrs): 5mm

Wildlife Habitat Type & Description

<table>
<thead>
<tr>
<th>ALL SITES</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>BatHibernacula: Caves, abandoned mines, underground foundations, karst features</td>
<td>Size of opening(s)</td>
<td>A145</td>
<td>18t</td>
<td>51419, 498805</td>
</tr>
<tr>
<td>Bedrock Type</td>
<td>Potential roosting sites in oaks (see photos)</td>
<td>A145</td>
<td>18t</td>
<td>51419, 498805</td>
</tr>
<tr>
<td>Depth of feature (if possible)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1m)</td>
<td>Number of access points Z visible</td>
<td>A1894</td>
<td>18t</td>
<td>514119, 498892</td>
</tr>
<tr>
<td>Size of opening(s) 10cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate Silica/sandy silts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows</td>
<td>Size of burrow</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of burrows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stick Nest: Stick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/osprey/other raptor nests</td>
<td>Tree species</td>
<td>none observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nest size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Number of features</td>
<td>none observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Sub/emergent veg present</td>
<td>none observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrubs/trees at edge present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Feature size (diameter)</td>
<td>none obs. w/in feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate of water body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100m) to MAM/SA/BOQ/FEO (note if man-made)</td>
<td>Type of substrate</td>
<td>none obs. w/in feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to wetland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of feature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys</td>
<td>Number of chimneys</td>
<td>none</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality Control: This form is complete & legible

Print Name: Cynthea Staples, A/2Q personnel

Signature: (Field Notes Author)

REV: 2016-05-06
Polygon Description

System
- Terrestrial
- Wetland
- Aquatic
- Mineral Soil
- Parent Min.
- Acidic Bedrock
- Basic Bedrock
- Open Water
- Shallow Water
- Surficial Dep.
- Bedrock

Substrate
- Organic
- Clayey
- Terrane
- Clayey Terrane
- Marine

Topographic Feature
- Upland
- Ridge
- Valley Slope
- Braided Stream
- Bluff
- Cretaceous

History
- Natural
- Cultural
- Lentic
- Flooded

Plant Form
- Plankton
- Submerged
- Floating-LVD
- Flag
- Free
- Shrubs
- Trees

Community
- Lake
- Pond
- River
- Stream
- Marsh
- Swamp
- Fen
- Bog
- Barren
- Meadow
- Prairie
- Shrub
- Grassland
- Forest
- Plantation

Stand Description

Species in Order of Decreasing Dominance

- *Trembling aspen > White elm > Manzanita > Green alder*

Layer
1. Canopy
2. Sub-Canopy
3. Understory
4. Grd. Layer

HT Codes
- 1e25m
- 2e10-15m
- 3e2-5m
- 4e1-1m

CVR Codes
- None
- 1-10%
- 11-25%
- 26-50%
- 51-80%
- 81-100%

Stand Composition
- BA: __________

Soil Analysis
- Texture:
- Moisture:
- Homogeneous / Variable:

Community Classification
- Community Class: __________
- Community Series: __________
- Ecosite: __________
- Vegetation Type: __________

INCLUSION
- __________

COMPLEX
- __________

Layers

- 1st Canopy < 10m
- 2nd Canopy < 25m
- 3rd Understory
- 4th Grd. Layer

Abundance Codes
- N = None
- R = Rare
- O = Occasional
- A = Abundant

Quality Control
- This form is complete □ & legible □

Print Name: Cerrie Staples (Field Notes Author)

Signature: (Field Notes QA/QC Personnel)

C:sers\staples\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\E9BP581BP\web: wildlife-habitat-form-update_rev-02.doc
Derived from Lee et al., 1998
Wildlife Habitat Assessment Form

Wildlife Habitat Type & Description

<table>
<thead>
<tr>
<th>Wildlife Habitat Type & Description</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bat Hibernacula: Caves, abandoned mines, underground foundations, karst features</td>
<td>Size of opening(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedrock Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth of feature (if possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown: collapsed concrete bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gravel & concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat:</td>
<td>Size of burrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows</td>
<td>Number of burrows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stick Nests: Stick nests found in any forest/woodland/swamp: includes heron colonies and bald eagle/ osprey/other raptor nests</td>
<td>Tree species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nest size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Number of features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Sub/emergent veg present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrubs/logs at edge present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate of water body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SA/BOO/ FEO (note if man-made)</td>
<td>Type of substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance to wetland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size of feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys</td>
<td>Number of chimneys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES & SPECIFICATIONS

- **Birds**
- **Mammals**
- **Amphibians**
- **Reptiles**
- **Veer (V)**
- **Deer (M)**
- **Gaga/whistle (G)**
- **Saw (S)**
- **Wing**
- **Rook (R)**

- CA=carcass; DP=distinctive parts; FE=feeding evidence; FY=eggs/nest; HO=house/den; OB=observed; SC=scar; SI=sign; TR=track; VOC=vocalization

Quality Control: This form is complete & legible

Signature: (Field Notes Author)
Polygons Description

<table>
<thead>
<tr>
<th>System</th>
<th>Substrate</th>
<th>Topographic Feature</th>
<th>History</th>
<th>Plant Form</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial</td>
<td>Organic</td>
<td>Lacustrine</td>
<td>Natural</td>
<td>Lake</td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td>Mineral Soil</td>
<td>Riverine</td>
<td>Cultural</td>
<td>Pond</td>
<td></td>
</tr>
<tr>
<td>Aquatic</td>
<td>Parent Min.</td>
<td>Bottomland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acidic Bedrk.</td>
<td>Valley Slope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td>Tableland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roll Upland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Water</td>
<td>Cliff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shallow Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surfacal Dep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand Description

<table>
<thead>
<tr>
<th>Layer</th>
<th>HT</th>
<th>CVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy</td>
<td>1 – 2</td>
<td>3</td>
</tr>
<tr>
<td>Sub-Canopy</td>
<td>3 – 2</td>
<td></td>
</tr>
<tr>
<td>Understory</td>
<td>5 – 2</td>
<td></td>
</tr>
<tr>
<td>Ground Layer</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species in Order of Decreasing Dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver Maple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HT Codes</th>
<th>1-25 m</th>
<th>2-10 m</th>
<th>3-20 m</th>
<th>4-30 m</th>
<th>5-40 m</th>
<th>6-50 m</th>
<th>7-60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVR Codes</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Stand Composition

<table>
<thead>
<tr>
<th>Size Class Analysis</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>A</td>
</tr>
<tr>
<td>10 – 24</td>
<td>D</td>
</tr>
<tr>
<td>25 – 50</td>
<td>> 50</td>
</tr>
</tbody>
</table>

Standing Snags

<table>
<thead>
<tr>
<th>Standing Snags</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>R</td>
</tr>
<tr>
<td>10 – 24</td>
<td>D</td>
</tr>
<tr>
<td>25 – 50</td>
<td>> 50</td>
</tr>
</tbody>
</table>

Deadfall/Logs

<table>
<thead>
<tr>
<th>Deadfall/Logs</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>R</td>
</tr>
<tr>
<td>10 – 24</td>
<td>D</td>
</tr>
<tr>
<td>25 – 50</td>
<td>> 50</td>
</tr>
</tbody>
</table>

Abundance Codes

<table>
<thead>
<tr>
<th>Abundance Codes</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>A</td>
</tr>
<tr>
<td>Rare</td>
<td>B</td>
</tr>
<tr>
<td>Occasional</td>
<td>C</td>
</tr>
<tr>
<td>Abundant</td>
<td>D</td>
</tr>
</tbody>
</table>

Community Classification

<table>
<thead>
<tr>
<th>Community Class</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Series</td>
<td>Code</td>
</tr>
<tr>
<td>Ecosite</td>
<td>Code</td>
</tr>
<tr>
<td>Vegetation Type</td>
<td>Code</td>
</tr>
<tr>
<td>Inclusion</td>
<td>Code</td>
</tr>
<tr>
<td>Complex</td>
<td>Code</td>
</tr>
</tbody>
</table>

Notes

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
</tr>
</thead>
</table>

Quality Control: This form is complete & legible □
Wildlife Habitat Assessment Form

Project Number: 100938539
Polygon No.: 5
Assessment Type: Visual: no access/Full: walk through feature/P: Partial access (indicate on map)
Weather Conditions:
- **TEMP (°C):** 20
- **WIND:** (heavy)
- **CLOUD:** 50%
- **PPT:** 0
- **PPT (last 24 hrs):** ~ 5mm

NOTES & SPECIES OBSERVATIONS (list species and type of observation. Indicate on map):
- Eutaxia vo
- Erigeron vo
- MiPT = OB (C. Leins) 5 - (2 adult)
- EANP = VO
- Blitar = VO
- E. packardii = FO (3 adult/young)
- N. bicolor = FO (6 adult/young)
- CA = C. bicolor
- DP = distinctive parts
- FE = fleeting evidence
- FY = eggs/nest
- HO = house/den
- OB = observed
- SC = scat
- SI = other sign
- TR = track
- VO = vocalization

<table>
<thead>
<tr>
<th>Wildlife Habitat Type & Description</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bat Hibernacula: Cells, abandoned mines, underground foundations, karst features</td>
<td>Size of opening(s)</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bedrock Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth of feature (if possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size of opening(s)</td>
<td>10 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate</td>
<td>Gravel/Sedimentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff sides with evidence of nests or burrows</td>
<td>Size of burrow</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of burrows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stick Nests: Stick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/osprey/other raptor nests</td>
<td>Tree species</td>
<td>none observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nest size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Number of features</td>
<td>0-6 observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feature size (diameter)</td>
<td>40 x 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td>0-10 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Sub/emergent veg present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrubs/logs at edge present</td>
<td>logs; large branches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td>semi-appears to dry up in summer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Feature size (diameter)</td>
<td>~ 25 m x 70 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td>0.10 - 1.0 m - deeper toward north end</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate of water body</td>
<td>Soft muck in clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td>Permanent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/S.A/BOO/FEQ (note if man-made)</td>
<td>Type of substrate</td>
<td>Gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance to wetland</td>
<td>~ 80 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size of feature</td>
<td>50 cm x 10.5 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys</td>
<td>Number of chimneys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality Control: This form is complete & legible
Signature:
(Handwritten Signature)
REV: 2016-06-06
Roadside ELC,
Woodland & Wildlife Habitat
Assessment Form

Project Number: 1609458729
Project Name: Barlow Solar Farm
Field Personnel: S Staples

Date: 2016/06/09
Weather Conditions: TEMP (OC): 19
WIND: 15-20
CLOUD: 0%
PRT: 0
PRT (in last 24 hrs): 0

POLYGON DESCRIPTION

<table>
<thead>
<tr>
<th>TOPOGRAPHIC FEATURE</th>
<th>HISTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACUSTRINE</td>
<td>NATURAL</td>
</tr>
<tr>
<td>RIVERINE</td>
<td>CULTURAL</td>
</tr>
<tr>
<td>BOTTOMLAND</td>
<td></td>
</tr>
<tr>
<td>TERRACE</td>
<td></td>
</tr>
<tr>
<td>VALLEY SLOPE</td>
<td></td>
</tr>
<tr>
<td>TABLELAND</td>
<td></td>
</tr>
<tr>
<td>ROLL UPLAND</td>
<td></td>
</tr>
<tr>
<td>CLIFF</td>
<td></td>
</tr>
<tr>
<td>TALUS</td>
<td></td>
</tr>
<tr>
<td>CREST / CAVE</td>
<td></td>
</tr>
<tr>
<td>ALVAR</td>
<td></td>
</tr>
<tr>
<td>ROCKLAND</td>
<td></td>
</tr>
<tr>
<td>BEACH / BAR</td>
<td></td>
</tr>
<tr>
<td>SAND DUNE</td>
<td></td>
</tr>
<tr>
<td>BLUFF</td>
<td></td>
</tr>
</tbody>
</table>

ELC

COMMUNITY DESCRIPTION & CLASSIFICATION

POLYGON:

START TIME: __________
END TIME: __________

STAND DESCRIPTION:

<table>
<thead>
<tr>
<th>LAYER</th>
<th>HT</th>
<th>CVR</th>
<th>SPECIES IN ORDER OF DECREASING DOMINANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>Silv maple, green ash, black cherry</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>hawthorn</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
<td>hawthorn</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

HT CODES:
0=CONE 10=CONIFEROUS 20=DECIDUOUS 30=SHRUB

CVR CODES:
0=NONE 1=KERNEL 2=SEED 3=SPERIES 4=STEM 5=STEM

STANDING SNAGS: 0 < 10 10-24 25-50 50+

ABUNDANCE CODES:
0=NONE 1=COMMON 2=RARE 3=OCCASIONAL 4=ABUNDANT 5=D Dom

STAND MATURITY: PIONEER 0=FOUL 1=MI 2=MATURE 5=OLD GROWTH

VEGETATION TYPE: maple mixed deciduous

<table>
<thead>
<tr>
<th>COMPLEX</th>
<th>CODE</th>
<th>SWD M3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence of Disturbance / Notes:
- Mature Silv maple, green ash, swamp
- Vernal pooling - dry
- Deer blinds @ edge/transmission corridors
- Tributary to Henderson rail flows eastward to otsini field, follows ditch in Cornwall area

Photos 1749 - 1762 = sub feature

Page 1 of 2

Quality Control: This form is complete 0 & legible 0

Print Name: Camyne Staples
Signature: ____________________________

(Received by RGC personnel)

(Received by RGC personnel)
Wildlife Habitat Type & Description

<table>
<thead>
<tr>
<th>Wildlife Habitat Type</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bat Hibernacula: Caves, abandoned mines, underground foundations, karst features</td>
<td>Size of opening(s)</td>
<td>none observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows</td>
<td>Size of burrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slick Nests: Stick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/loONY/other raptor nests</td>
<td>Tree species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond, evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Number of features</td>
<td>multiple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SAB/BOO/FEO (note if man-made)</td>
<td>Type of substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys</td>
<td>Number of chimneys</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES & SPECIES OBSERVATIONS
Migration corridor for turtles = route water/seepage/down east side of feature/west side of field/soil/solar farm

CA = carcass; DP = distinctive parts; FE = feeding evidence; FY = eggs/nest; HO = house/den; OB = observed; SC = scat; SI = other sign; TR = track; VO = vocalization

Extent of Physical Investigation of Feature:
- Entire /
- Partial, walk through polygon (indicate on map)

Quality Control:
This form is complete & legible

Print Name: [Signature]
Roadside ELC,
Woodland & Wildlife Habitat
Assessment Form

Project Number: 1607.06.179
Project Name: Barlow Solar Farm
Field Personnel: D. Staples

Weather Conditions:
TEMP (°C): 19-22
WIND: 25-45 km/h
CLUD: 50%
FPT: 0
PPT (in last 24 hr): 5 mm

Polygon # 5

ELC
COMMUNITY DESCRIPTION & CLASSIFICATION

STAND DESCRIPTION & CLASSIFICATION:

LAYER | HT | CVR | SPECIES IN ORDER OF DECREASING
DOMINANCE
1 | CANOPY | 1-2 | 4 | Silver maple > Manitoba maple > white elm > willow > green ash
2 | SUB-CANOPY | | | Daisy's rocket
3 | UNDERSTORY | | |
4 | GRD. LAYER | | |

HT CODES: 1=0-25m 2=25-50m 3=50-100m 4=100-200m 5=200-400m 6=400-800m
CVR CODES: 0=NONE 1=ONE 2=ONE 3=2+ 4=3+ 5=4+ 6=5+ 7=6+ 8=7+ 9=8+ 10=9+ 11=10+ 12=11+ 13=12+ 14=13+ 15=14+ 16=15+ 17=16+ 18=17+ 19=18+ 20=19+ 21=20+ 22=21+ 23=22+ 24=23+ 25=24+ 26=25+ 27=26+ 28=27+ 29=28+ 30=29+ 31=30+ 32=31+ 33=32+ 34=33+ 34=34+ 35=35+ 36=36+ 37=37+ 38=38+ 39=39+ 40=40+ 41=41+ 42=42+ 43=43+ 44=44+ 45=45+ 46=46+ 47=47+ 48=48+ 49=49+ 50=50+ 51=51+ 52=52+ 53=53+ 54=54+ 55=55+ 56=56+ 57=57+ 58=58+ 59=59+ 60=60+ 61=61+ 62=62+ 63=63+ 64=64+ 65=65+ 66=66+ 67=67+ 68=68+ 69=69+ 70=70+ 71=71+ 72=72+ 73=73+ 74=74+ 75=75+ 76=76+ 77=77+ 78=78+ 79=79+ 80=80+ 81=81+ 82=82+ 83=83+ 84=84+ 85=85+ 86=86+ 87=87+ 88=88+ 89=89+ 90=90+ 91=91+ 92=92+ 93=93+ 94=94+ 95=95+ 96=96+ 97=97+ 98=98+ 99=99+ 100=100+

Evidence of Disturbance / Notes:
No SFR observed
- occasional coarse woody debris visible
- thigmotropes along ditchline/edge of polygon
- ditched watercourse along north side of feature ~15-20cm depth, apparently 2m wide, slow moving w/ light colored (silty) bottom; algae growth 20-30%
<table>
<thead>
<tr>
<th>Wildlife Habitat Type & Description</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bat Hibernacula: Caves, abandoned mines, underground foundations, karst</td>
<td>Size of opening(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>features</td>
<td>Bedrock Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth of feature (if possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the</td>
<td>Number of access points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frost line (i.e., at least 1 m)</td>
<td>Size of opening(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed</td>
<td>Size of burrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naturally eroding, steep slopes, cliff faces with evidence of nests or</td>
<td>Number of burrows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>burrows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stick Nests: Stick nests found in any forest/woodland/swamp; includes</td>
<td>Tree species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heron colonies and bald eagle/ osprey/other raptor nests</td>
<td>Nest size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond; Evidence of</td>
<td>Number of features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holding water in most years through late spring (i.e., late May) or into</td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>summer</td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in</td>
<td>Sub/emergent veg present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>forests (see document for indicator species)</td>
<td>Shrubs/logs at edge present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or</td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fens with soft substrates and deep enough not to freeze solid</td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate of water body</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas</td>
<td>Type of substrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjacent (<100 m) to MAM/SA/BOO/ FEO (note if man-made)</td>
<td>Gravel along roadway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows</td>
<td>Distance to wetland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(no minimum size) with crayfish chimneys</td>
<td>700 m to nearest known watercourse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Size of feature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1m width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality Control: This form is complete □ & legible □

Print Name: Cerwyn Staples

(For Field Author)

Signature: □

(Field Notes: QA/QC personnel)

REV: 2014-04-14
Roadside ELC, Woodland & Wildlife Habitat Assessment Form

Property #: 13
Polygon #: 8

Project Name: BW
Field Personnel: C. Staples
Date: Jun 7, 2001
Temp (°C): 19
Wind: 15.35 km/h NW
Height: 1100 ft
Rainfall: 1 mm
Weath Cond:

POLYGON DESCRIPTION

<table>
<thead>
<tr>
<th>TOPOGRAPHIC FEATURE</th>
<th>HISTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACUSTRINE</td>
<td>NATURAL</td>
</tr>
<tr>
<td>RIERINE</td>
<td></td>
</tr>
<tr>
<td>BOTTLELAND</td>
<td></td>
</tr>
<tr>
<td>TERRACE</td>
<td></td>
</tr>
<tr>
<td>VALLEY SLOPE</td>
<td></td>
</tr>
<tr>
<td>TABLELAND</td>
<td></td>
</tr>
<tr>
<td>ROLL UPLAND</td>
<td></td>
</tr>
<tr>
<td>CLIFF</td>
<td></td>
</tr>
</tbody>
</table>

STAND DESCRIPTION:

<table>
<thead>
<tr>
<th>LAYER</th>
<th>HT</th>
<th>CVR</th>
<th>SPECIES IN ORDER OF DECREASING DOMINANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CANOPY</td>
<td>4-4</td>
<td>7</td>
<td>Occasional elm (edge)</td>
</tr>
<tr>
<td>2 SUB-CANOPY</td>
<td>4</td>
<td>7</td>
<td>Willow > Green Ash</td>
</tr>
<tr>
<td>3 UNDERSTORY</td>
<td>4</td>
<td>7</td>
<td>Willow > Green Ash</td>
</tr>
<tr>
<td>4 GRD. LAYER</td>
<td>4</td>
<td>7</td>
<td>Willow > Green Ash</td>
</tr>
</tbody>
</table>

HT CODES:
1-25cm
26-50cm
51-75cm
76-100cm
101-200cm
201-500cm
501-1000cm
>1000cm

CVR CODES:
0=NONE
1-10=CVR<10%
11-25=CVR10-25%
26-50=CVR26-50%
51-75=CVR51-75%
76-100=CVR76-100%
>100=CVR>100%
N=Not observed

STANDING SNAGS:
<10
10-25
25-50
>50

ABUNDANCE CODES:
N=NONE
1=COMMON
2=ABUNDANT
3=DOMINANT
4=DOOMINANT
N=Not observed

STAND MATURITY:
Pioneer
Young
Mid-Age
Mature
Old Growth

VEGETATION TYPE:
Thick Swamp
CODE: SWT

Evidence of Disturbance / Notes:

- Habitat is within hydro corridor, not suitable potential EDO/LEARW habitat
- Photos 1825, 1834, habitat
- 1881-1883, 1821-1922, very large soil piles (4-8m tall, 10-40m wide), soil appears to be gravel, topsoil, tent caterpillars on foliages (occasional)

Print Name: C. Staples
Field Notes Author: C. Staples
Signature: (Field Notes QA/QC personnel)

**Valid resource internal info and template: Vegetation, ELC - woodlands & wildlife habitat form Rev07.docx (Derived from Lee et al., 1998)
Notes & Species Observations:

- BAGS VO OB - flying over feature, may be nesting in adjacent features (machine yard - garage overhangs, unoccupied cargo trailers)

Wildlife Habitat Type & Description

<table>
<thead>
<tr>
<th>Wildlife Habitat Type & Description</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bat Hibernacula: Caves, abandoned mines, underground foundations, karst features</td>
<td>Size of opening(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows</td>
<td>Size of burrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stick Nests: Stick nests found in any forest, woodland, swamp: Includes heron colonies and bald eagle, osprey, other raptor nests</td>
<td>Tree species</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WOODLANDS

- Vernal Pools: Permanent or semi-permanent pool or pond: Evidence of holding water in most years through late spring (e.g. late May) or into summer | Number of features | | | |
- Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species) | Sub/emergent veg present | | | |
- Wetlands: Turtles, nesting areas, permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid | Feature size (diameter) | | | |
- Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SA/BOO/FEO (note if man-made) | Type of substrate | nil - roadside is narrow, asphalt to edge | | | |
- Terrestrial Crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys | Number of chimneys | | | |

Quality Control: This form is complete & legible

Print Name: Cenye Staples

Signature: (Field Notes Author)
Roadside ELC, Woodland & Wildlife Habitat Assessment Form

Project Number: LF0930879
Project Name: Barlow Solar Farm
Field Person: C. Staples

Date: June 7, 2016

Weather Conditions: TEMP (C): 25-35 km/h: 50%

POLYGON DESCRIPTION

TOPOGRAPHIC FEATURE

- LACUSTRINE
- TALUS
- NATURAL
- RIVERINE
- CREVICE / CAVE
- CULTURAL
- DOTTMLAND
- ALVAR
- TERRACE
- ROCKLAND
- VALLEY SLOPE
- BEACH / BAR
- ROLL UPLAND
- SAND DUNE
- BLUFF

HISTORY

ELC

COMMUNITY DESCRIPTION & CLASSIFICATION

START TIME:

END TIME:

STAND DESCRIPTION:

LAYER | HT | CVR | SPECIES IN ORDER OF DECREASING DOMINANCE
1 CANOPY | 1 | 3 | White Pine
2 SUB-CANOPY | 2 | 3 | Queen Ash
3 UNDERSTOREY | 4 | Swamp White Oak (edgys)
4 GRN. LAYER

HT CODES: 1=25m, 2=40m, 3=65m, 4=80m, 5=100m, 6=125m, 7=150m

CVR CODES: 0=None, 1=Very Rare, 2=Occasional, 3=Abundant, 4=Dominant

STANDING SNAGS: 10 - 25

ABUNDANCE CODES: 0=None, 2=Very Rare, 3=Occasional, 4=Abundant, 5=Dominant

STAND MATURITY: PIONEER, YOUNG, MID-AGE, OLD GROWTH

VEGETATION TYPE:

- Flood Hardwood
- Shallow Aquatic

Evidence of Disturbance / Notes:

- Photos 17.08.1909 - waterbody 1 - see turtle hab assess form 17.11.1713 - vegetation
- Disturbance: 1m² concrete blocks along shoreline
- No SAR observed
- Snake habitat (basking) present - old car tires on south bank (photos 17.14.1713)

Print Name: C. Staples

Quality Control: This form is complete & legible

(Stake Notes OQA/QC personnel)
NOTES & SPECIES OBSERVATIONS
- **Bill Prog x 4.08**
- **Veer x 50**
- **Ew A x 108**

Wildlife Habitat Type & Description

<table>
<thead>
<tr>
<th>Wildlife Habitat Type & Description</th>
<th>Site Assessment</th>
<th>Photo ID</th>
<th>Map ID</th>
<th>UTM Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bat Hibernacula: Caves, abandoned</td>
<td>Size of opening(s)</td>
<td>None observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mines, underground foundations, karst</td>
<td>Bedrock Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>features</td>
<td>Depth of feature (if possible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snake Hibernacula: Burrows, rock crevices, fissures that extend below the frost line (i.e. at least 1 m)</td>
<td>Number of access points</td>
<td>None observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank / Cliff Colonial Bird Nesting Habitat: Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows</td>
<td>Size of opening(s)</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate</td>
<td>sandy clay silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slick Nests: Slick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/ osprey/other raptor nests</td>
<td>Number of burrows</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tree species</td>
<td>None observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nest size</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOODLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pools: Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e. late May) or into summer</td>
<td>Number of features</td>
<td>None observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feature size (diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeps and Springs: Locations where groundwater comes to the surface in forests (see document for indicator species)</td>
<td>Sub/emergent veg present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrubs/logs at edge present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WETLANDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Wintering Areas: Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid</td>
<td>Feature size (diameter)</td>
<td>25m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water depth</td>
<td>1-2 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substrate of water body</td>
<td>soft muck (detritus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water permanency</td>
<td>permanently</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Nesting Habitat: Exposed mineral soil (sand or gravel) areas adjacent (<100 m) to MAM/SA/BOOQ (FOE) (note if man-made)</td>
<td>Type of substrate</td>
<td>gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distance to wetland</td>
<td>30 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial crayfish Habitat: Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys</td>
<td>Size of feature</td>
<td>linear 9 m (old quarry road)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of chimneys</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Print Name: Cygne Staples

Signature:

Field Notes QA/QC Personnel:

Date: June 7, 2016

Site: Barlow Solar

ELC Polygon: #9

Assessment Type: □ Visual; no access / □ Walk through feature / □ Entire / □ Partial; walk through polygon (indicate on map)

Extent of Physical Investigation of Feature: □ Entire / □ Partial, walk through polygon (indicate on map)

Contributor:

Quality Control: This form is complete □ & legible □
Roadside ELC,
Woodland & Wildlife Habitat
Assessment Form

Stantec Consulting Ltd.
1 - 70 Southgate Drive
Guelph, ON
Canada N1G 4P5
Tel: (519) 836-6050
Fax: (519) 836-2493

Project Number: 160950039
Date: 2016/06/07
Weather Conditions: TEMP (°C): 19, WIND: 15-20 km/h, CLOUD: 50%, PPT (in last 24 hrs): 0-5 mm

POLYGON DESCRIPTION

TOPOGRAPHIC FEATURE

- LACUSTRINE
- RIVERINE
- BOTTOMLAND
- TERRACE
- VALLEY SLOPE
- TABLELAND
- ROLL UPLAND
- CLIFF

HISTORY

- NATURAL
- CULTURAL

ELC
COMMUNITY DESCRIPTION & CLASSIFICATION

POLYGON:

START TIME:

END TIME:

STAND DESCRIPTION:

LAYER | HT | CVR | SPECIES IN ORDER OF DECREASING DOMINANCE
1 | CANOPY
2 | SUB-CANOPY
3 | UNDERSTORY
4 | GROUND, LAYER

HT CODES:
0-25m 25-100m 100-250m 250-500m 500+ m
CVR CODES:
0=NONE 10%=RARE 20%=OCCASIONAL 30%=ABUNDANT 40%=DOMINANT 50%=DONT Observed

STANDING SNAGS:
0 = < 10 10 - 24 25 - 50 > 50

ABUNDANCE CODES:
N=NONE R=RARE O=OCCASIONAL A=ABUNDANT D=Dominant N/D=Not Observed

STAND MATURITY:
PIONEER YOUNG MID-AGE MATURE OLD GROWTH

VEGETATION TYPE:

COMPLEX

CODE:

SOMERS

Evidence of Disturbance / Notes:
- polygon is a hydro corridor. Vegetation within polygon is approx 1.5-2m in height (hasn't been recently brushed)
- NO SAP species observed within feature
- feature is wet. Terrain is level. Adjacent features are forested swamps.

Layer: 1=Canopy >10m 2=Sub-Canopy 3=Understory 4=Ground (Grd) Layer

Abundance Codes:
N=none R=Rare O=occasional A=abundant D=dominant N/D=Not Observed

Trees:
- Green ash
- Trembling aspen

Shrubs:
- Narrow-leaved red-osier dogwood
- Hawthorn
- Willows

Ground:
- Goldenrod spp
- Grass spp

Species Code: LAYER | DISTANCE FROM RD. | COLL.
1 | 2 | 3 | 4 | 5-5m | >5m | COL.

Print Name: Cerene Staples
Signature: [Handwritten Signature]
Wildlife Habitat Type & Description

ALL SITES

- **Bat Hibernacula:** Caves, abandoned mines, underground foundations, karst features
 - Size of opening(s)
 - Bedrock Type
 - Depth of feature (if possible)

- **Snake Hibernacula:** Burrows, rock crevices, fissures that extend below the frost line (i.e., at least 1 m)
 - Number of access points
 - Size of opening(s)
 - Substrate

- **Bank / Cliff Colonial Bird Nesting Habitat:** Exposed soil banks, undisturbed, naturally eroding, steep slopes, cliff faces with evidence of nests or burrows
 - Size of burrow
 - Number of burrows

- **Stick Nests:** Stick nests found in any forest/woodland/swamp; includes heron colonies and bald eagle/osprey/other raptor nests
 - Tree species
 - Nest size

WOODLANDS

- **Vernal Pools:** Permanent or semi-permanent pool or pond. Evidence of holding water in most years through late spring (i.e., late May) or into summer
 - Number of features
 - Feature size (diameter)
 - Water depth

- **Seeps and Springs:** Locations where groundwater comes to the surface in forests (see document for indicator species)
 - Sub/emergent veg present
 - Shrubs/logs at edge present
 - Water permanency

WETLANDS

- **Turtle Wintering Areas:** Permanent water bodies, large wetlands, bogs, or fens with soft substrates and deep enough not to freeze solid
 - Feature size (diameter)
 - Water depth
 - Substrate of water body
 - Water permanency

- **Turtle Nesting Habitat:** Exposed mineral soil [sand or gravel] areas adjacent (<100 m) to MAM/SA/BOO/FEO (note if man-made)
 - Type of substrate
 - Distance to wetland
 - Size of feature

- **Terrestrial Crayfish Habitat:** Edges of shallow marshes and meadows (no minimum size) with crayfish chimneys
 - Number of chimneys

Extent of Physical Investigation of Feature:

- □ Entire
- □ Partial, walk through polygon (indicate on map)

Notes & Species Observations

No species observed.
APPENDIX E: CURRICULUM VITAE
Nicole Kopysh is a Terrestrial Ecologist and Project Manager who has been involved in projects of varying sizes from multiple sectors including aggregates, renewable energy and other development types. Nicole has successfully managed or directed the natural terrestrial field programs and reporting requirements for Environmental Impact Assessments, constraints analyses, natural environment technical reports, Environmental Implementation Reports, Natural Heritage Assessments for the Renewable Energy Assessment program and natural heritage monitoring programs. These have included extensive agency and public consultation, where Nicole demonstrates effective communication skills.

Nicole’s experience includes the implementation of the natural heritage policy of the Ontario Provincial Policy Statement, Greenbelt Plan, Oak Ridges Moraine Act, Migratory Birds Convention Act, Green Energy Act and municipal policy documents for municipal draft plan applications throughout southern Ontario. Nicole is also experienced in the interpretation and application of the Endangered Species Act (ESA), including the development and completion of permit applications under the ESA. Nicole is a skilled birder and has field experience conducting bird surveys, Species at Risk surveys, general terrestrial monitoring and assessments, wildlife inventories and habitat assessments.

EDUCATION
BES, University of Waterloo / Bachelor of Environmental Studies, Honours Environment and Resource Studies, Co-op Program, Waterloo, Ontario, 1998
Certificate, Ontario Ministry of Natural Resources / Ecological Land Classification (ELC) for Southern Ontario, Turkey Point, Ontario, 2014

MEMBERSHIPS
Committee Member, Bobolink and Eastern Meadowlark Round Table, Ontario Ministry of Natural Resources
Steering Committee Member, Joint Bird and Bat Monitoring Database - Environment Canada, Ministry of Natural Resources, Canadian Wind Association, Bird Studies Canada
Member, Society of Canadian Ornithologists
Member, Ontario Field Ornithologists

PROJECT EXPERIENCE
Renewable Energy
Grand Renewable Energy Project, 250 MW (includes 100 MW solar farm), Niagara Region, Haldimand County, Ontario (Species at Risk Advisor)
Almonte Solar Project, 10 MW, Ontario (Species at Risk Advisor / Senior Reviewer)
David Brown Solar Park, 10 MW, Ontario (Species at Risk Advisor)
Niagara Region Wind Farm, 230 MW, Niagara Region, Haldimand County, Ontario (Terrestrial Ecologist)
Kingsbridge I & II Wind Projects, 200 MW, Goderich, Ontario (Terrestrial Ecologist)
Melancthon I & II Wind Farms, 200 MW (Terrestrial Ecologist)

* denotes projects completed with other firms
Nicole Kopysh BES
Ecologist / Project Manager

Wolfe Island Wind Power Project, 198 MW, Wolfe Island, Ontario (Terrestrial Ecologist)
Study design, coordination and conducting of monitoring for spring migratory birds, fall migrating raptors, staging waterfowl, winter raptors and grassland bird populations. Design and conducting of specific studies to target avian Species at Risk. Assessment of amphibian populations, mammal populations, and wildlife corridors. Preparation of technical report appendix to the Environmental Screening Report

Port Dover & Nanticoke Wind Project, 105 MW, Ontario (Project Manager / Terrestrial Ecologist)

Amherst Island Wind Project, 75 MW, Ontario (Terrestrial Ecologist)

Sydenham Wind Project, 67 MW, Ontario (Project Manager / Terrestrial Ecologist)

Bow Lake Wind Project, 60 MW, Ontario (Terrestrial Ecologist)

White Pines Wind Project, 60 MW, Ontario (Project Manager / Terrestrial Ecologist)

St. Columban Wind Project, 33 MW, Ontario (Project Manager / Senior Reviewer)

Plateau Wind Project, 27 MW, Ontario (Project Manager / Terrestrial Ecologist)

Goulais Wind Project, 25 MW, Ontario (Terrestrial Ecologist)

Ostrander Point Wind Energy Park, 22.5 MW, Ontario (Project Manager / Terrestrial Ecologist)

Grand Valley Wind Farm 1 & 2 Wind Project, 19 MW, Ontario (Terrestrial Ecologist)

Fairview Wind Project, 18.4 MW, Ontario (Terrestrial Ecologist)

Brooke Alvinston Wind Project, 10 MW, Ontario (Project Manager / Terrestrial Ecologist)

Springwood Wind Project, 9 MW, Ontario (Project Manager / Terrestrial Ecologist)

Whittington Wind Project, 6.15 MW, Ontario (Project Manager / Terrestrial Ecologist)

Napier Wind Project, 4.8 MW, Ontario (Project Manager / Terrestrial Ecologist)

Port Ryerse Wind Project, Ontario (Species at Risk Advisor)

Chinodin Melancthon and Grey Highlands Wind Projects, Ontario (Terrestrial Ecologist)
Coordinating and conducting monitoring of bats and migratory and breeding birds for wind turbine development

Proton Wind Program, Southgate Township, Ontario (Terrestrial Ecologist)
Coordinating and conducting monitoring of migratory and breeding birds for wind turbine development, preparation of comprehensive technical appendix to the Environmental Screening Report

Pre-construction: Renewable Energy Projects, Various Sites, Ontario (Team Lead - Field Program and Technical Reporting)
Study design, direction of field programs, agency and public consultation, evaluation and assessment of natural features, significant wildlife habitat, presence of Species at Risk, assessment of project impacts and preparation of final reports for the following projects:
- White Pines Wind Project Natural Heritage Assessment, Environmental Impact Study and Endangered Species Act Assessment and Permitting
- Ostrander Point Wind Energy Park Natural Heritage Assessment, Environmental Impact Study and Endangered Species Act Assessment and Permitting
- Springwood Wind Project Natural Heritage Assessment
- Whittington Wind Project Natural Heritage Assessment, Environmental Impact Studies and Endangered Species Act Assessment and Permitting

* denotes projects completed with other firms
Nicole Kopysh
Ecologist / Project Manager

- Port Dover and Nanticoke Wind Project Natural Heritage Assessment, Environmental Impact Study and Endangered Species Act Assessment and Permitting
- Brooke-Alvinston Wind Project Natural Heritage Assessment

Post-construction: Renewable Energy Projects, Various Sites, Ontario (Team Lead - Field Program and Technical Reporting)
Post-construction monitoring and reporting for various wind energy projects in Ontario, including:
- Melancthon I Wind Plant
- Wolfe Island Wind Power Project

Endangered Species/ Species at Risk Assessments
Species at Risk Assessments, Various Sites, Ontario (Team Lead, Field Program and Technical Reporting)
Study design, direction of field programs, agency and public consultation, evaluation and assessment of presence of Species at Risk and their habitats, development of mitigation measures and monitoring programs, assessment of project impacts and preparation of final reports for the following projects:
- White Pines Wind Project Natural Heritage Assessment; Environmental Impact Study and Endangered Species Act Assessment and Permitting, involving Barn Swallow, Eastern Meadowlark, Bobolink, Butternut, Blanding’s Turtle, Whip-poor-will, Henslow’s Sparrow
- Ostrander Point Wind Energy Park Natural Heritage Assessment; Environmental Impact Study and Endangered Species Act Assessment and Permitting, involving Barn Swallow, Eastern Meadowlark, Bobolink, Butternut, Blanding’s Turtle, Whip-poor-will, Henslow’s Sparrow
- Whittington Wind Project Natural Heritage Assessment, Environmental Impact Studies and Endangered Species Act Assessment and Permitting, involving Barn Swallow, Eastern Meadowlark and Bobolink
- Port Dover and Nanticoke Wind Project Natural Heritage Assessment, Environmental Impact Study and Endangered Species Act Assessment and Permitting, involving American Badger, Eastern Hog-nosed Snake, Barn Swallow, Bobolink and Eastern Meadowlark

Aggregate Services
Neubauer Pit, Township of Puslinch, Ontario (Project Assistant, Ecologist)
Natural environment field inventories and Level II Natural Environment Technical Report

Hillsburgh Huxley Pit, Hillsburgh, Ontario (Project Assistant, Ecologist)
Natural environment field inventories, Woodlot Assessment of Significance and Level II Natural Environment Technical Report

Proposed Bromberg Pit, Ayr, Ontario (Project Assistant, Ecologist)
Natural environment field inventories and Level I Natural Environment Technical Report

Commercial / Retail Development
First Capital Holdings Trust, Guelph, Ontario (Project Manager)
Environmental Implementation Report. Vegetation buffers, wildlife corridor, tree conservation plan, planning and design of invasive species removal, design of compliance and performance monitoring program

Natural Sciences & Heritage Resources
Forest Bird Research - Canadian Wildlife Service* (Field Assistant)
Located Wood Thrush nests, monitored nesting success, banded adult and nestling birds, and conducted vegetation surveys

Forest Bird Research - Smithsonian Institution* (Field Assistant)
Located and monitored Hooded Warbler nests and conducted insect sweep net sampling. Located Blue-headed Vireo nests and conducted playback experiments

Coordinated and managed various aspects of a province-wide conservation/research project. This involved coordinating coverage to ensure project goals were met; hiring, training and managing contract staff; development of funding proposals; coordination of field work; management of volunteers and working committees; assistance in preparation of Atlas book for publication

* denotes projects completed with other firms
Colonial Marshbird Census - Bird Studies Canada*
(Project Coordinator)
Developed the project outline, scope, organization and staffing. Scheduled the project timelines and tasks. Performed key field work in marshes throughout southern Ontario.

Ontario Eastern Screech-owl Survey - Ontario Breeding Bird Atlas* (Project Manager)
Developed project proposal, project timeline, schedule and budget. Responsible for communications, data management and handling. Launched survey and coordinated volunteer involvement.

Residential Development
Almas Property, Hamilton, Ontario (Project Manager)
Environmental Impact Statement and Natural Heritage Assessment.

Golhar Residence, Hockley Valley, Ontario (Project Manager)
Development of environmental review for a proposed pond located within the Niagara Escarpment Protection Area.

Gaspell Homeowners Guide, Whitby, Ontario (Project Manager)

Fourteen Mile Creek Long-term Natural Heritage Monitoring Program, Oakville, Ontario (Natural Heritage Monitoring Project Director)
A watershed-based inventory and monitoring program for a study area in the Fourteen Mile Creek watershed was developed in association with the Conservation Authority to assess human induced stress on the greater ecosystem. The program included one year of inventory work and four subsequent years of monitoring and incorporated the following components: streamflow and rainfall monitoring, erosion and creek morphology, groundwater, vegetation and Ecological Land Classification, breeding birds, fish, water quality and benthos.

Sports, Recreation & Leisure
Clublink Wyndance Golf Courses, Uxbridge, Ontario (Project Manager)
Natural heritage assessment and development of environmental report addendum and significant species plan.

* denotes projects completed with other firms
Nicole Kopysh BES
Ecologist / Project Manager

PUBLICATIONS

Melissa Straus completed her undergraduate degree with honours in Environmental Sciences at the University of Guelph and her Masters degree in Biology at Trent University. Her M.Sc. focused on the effects of silvicultural practices on reproductive success of cavity-nesting birds in southwestern Ontario.

Melissa is a Terrestrial Ecologist with experience in various sectors, including aggregate services, electrical power distribution, oil and gas, renewable energy, residential development and transportation planning. Her experience involves implementation of the Migratory Birds Convention Act, the Species at Risk Act, and Endangered Species Act. Melissa is a skilled birder and has extensive field experience conducting avian, reptile, amphibian, Ecological Land Classification (ELC), and botany surveys, including rare and protected species. She performs construction monitoring, wetland delineations according to the Ontario Wetland Evaluation System (OWES) and post-construction monitoring for wind power projects. Melissa has conducted habitat assessments and species-specific studies for various species at risk including Jefferson's Salamander, Blanding’s Turtle, Butler’s Gartersnake, Eastern Foxsnake, Massasauga, Bobolink, Eastern Meadowlark, Barn Swallow, Chimney Swift, Eastern Whip-poor-will, Loggerhead Shrike, Cerulean Warbler and bat species at risk. She has extensive experience conducting species at risk occurrence surveys and mitigation measure effectiveness monitoring during construction. Melissa's project management experience includes various green energy, oil and gas pipelines, and residential development projects.

EDUCATION
M.Sc. in Biology, Trent University, Peterborough, Ontario, 2009
B.Sc. in Environmental Sciences, Co-op Program, University of Guelph, Guelph, Ontario, 2003

CERTIFICATIONS & TRAINING
Certificate, Ontario Ministry of Natural Resources / Ecological Land Classification System for Southern Ontario, Kemptville, Ontario, 2010
Certificate, St. John Ambulance / Standard First Aid with CPR C + AED, Guelph, Ontario, 2015

PROJECT EXPERIENCE

Renewable Energy

K2 Wind Power Project, Goderich, Ontario
(Terrestrial Ecologist / Coordinator)
Performed environmental monitoring tasks both pre- and post-construction related to breeding amphibians, bat species at risk, and a heronry. Coordinator for daily monitoring, data management, reporting as well as identification and notification of bat and bird species at risk during the mortality monitoring program in 2016.

Adelaide Wind Power Project, Strathroy, Ontario
Conducted ELC and wildlife habitat assessments pre-construction surveys. Coordinator for 2015 and 2016 mortality monitoring program, including oversight of daily monitoring, data management, reporting, species identification, and agency notification for species at risk.

Grand Renewable Energy Project, Cayuga, Ontario
(Terrestrial Ecologist / Technical Reporting)
Conducted ELC and wildlife habitat assessment, salamander trapping including sampling for Jefferson’s Salamander, coordinated and conducted winter raptor and Short-eared Owl surveys, assisted with NHA, EIS, and species at risk reporting for proposed wind and solar project.

* denotes projects completed with other firms
Melissa A. Straus M.Sc.
Terrestrial Ecologist

Niagara Region Wind Project, Niagara Region and Haldimand County, Ontario (Terrestrial Ecologist)
Conducted inspection and compliance monitoring during construction to verify that exclusion fencing was functioning to exclude Blanding’s Turtles and Snapping Turtles

White Pines Wind Project, Picton, Ontario (Terrestrial Ecologist)
Conducted ELC, amphibian, crepuscular bird auditory surveys for Eastern Whip-poor-will, and incidental wildlife surveys for species at risk including Blanding’s Turtle. Implemented onsite contractor training pertaining to Blanding’s Turtle, Eastern Meadowlark, Bobolink and Eastern Whip-poor-will

Port Dover and Nanticoke Wind Project, Port Dover, Ontario (Terrestrial Ecologist / Coordinator)
Performed environmental monitoring tasks related to migrating Tundra Swans and identification and notification of bat and bird species at risk during post-construction monitoring programs. Melissa was responsible for coordinating daily monitoring, data management and reporting of post-construction monitoring

Proposed Solar Farm, Thunder Bay, Ontario (Terrestrial Ecologist)
Conducted a preliminary natural heritage assessment and constraints analysis for a proposed solar project. Coordinated and conducted field surveys, including ELC, reptile basking surveys, an inventory of rare plants, and wildlife habitat assessments

Melancthon Ecopower Centre, Melancthon Township, Ontario (Terrestrial Ecologist)
Conducted environmental monitoring of post-construction wind turbine impacts on bird and bat mortalities

Wolfe Island Wind Plant, Wolfe Island, Ontario (Terrestrial Ecologist)
Conducted winter raptor and raptor disturbance surveys in addition to assisting with permitting reports and post-construction mortality monitoring trials

Kruger Energy Port Alma, Port Alma, Ontario (Terrestrial Ecologist / Coordinator)
Coordinated on site subcontractors conducting mortality monitoring and scavenger trials, some permit reporting

Endangered Species / Species at Risk Assessments
Species at Risk Assessments and Construction Inspections, Various Sites, Ontario (Terrestrial Ecologist / Project Coordinator)
Melissa engaged in agencies consultation and coordinated, implemented, and conducted field programs, including determination of potential presence of species at risk and associated habitats, assessment of project impacts, permitting, as well as development of mitigation plans and monitoring programs for the following projects:
• Enbridge Gas Distribution Inc. A1 Monitoring Well
• Enbridge Gas Distribution Inc. Integrity Digs
• Enbridge Gas Distribution Inc. Wilkesport Project
• Enbridge Project Nexus Interconnect Pipeline
• Grand Renewable Energy Project
• Niagara Region Wind Project
• NOVA Chemicals 2020 Expansion Project
• NOVA Chemicals Genesis Pipeline Extension Project
• NOVA Chemicals Kimball Road Pipeline Extension Project
• Port Dover and Nanticoke Wind Project
• Private Development in Schomberg
• St. Clair Pipelines Bluewater River Crossing Replacement
• TransCanada Pipelines Inc. Energy East Pipeline Project
• Union Gas Brantford to Kirkwall Pipeline
• Union Gas Dawn Compressor Station Expansion
• Union Gas Hamilton to Milton Pipeline
• Union Gas Parkway West Natural Gas Pipeline and Compressor Station
• Union Gas Sarnia Expansion
• White Pines Wind Project

Oil and Gas Pipelines
Enbridge Gas Distribution Inc. GTA Project, Greater Toronto Area, Ontario (Wildlife Lead)
Worked as part of a multidisciplinary team to coordinate the 2015 bird nest sweep program for compliance with the Migratory Bird Convention Act across three spreads during installation of a new gas pipeline within the Greater Toronto Area. This entailed tracking positive locates, establishing construction buffers based on bird species, and coordinating deployment of technical staff for follow-up checks to determine status of active vs. completed nests

* denotes projects completed with other firms
Melissa A. Straus M.Sc.
Terrestrial Ecologist

Enbridge Gas Distribution Inc. Integrity Digs at Multiple Sites, Various Sites, Ontario (Reviewer / Terrestrial Ecologist)
Species at risk reviewer of environmental compliance documents for hundreds of integrity digs across Ontario, including a suite of avian (e.g. Cerulean Warbler, Bobolink, Eastern Meadowlark, Loggerhead Shrike) and reptile species at risk (e.g. Blanding’s Turtle, Butler’s Gartersnake). Conducted nest searches at various sites in southern Ontario to ensure compliance under the Migratory Birds Convention Act, and participated in vegetation removal inventories.

Enbridge Gas Distribution Inc. Wilkesport Project, Wilkesport, Ontario (Lead Terrestrial Ecologist)
Developed construction mitigation measures and consulted with the Ministry of Natural Resources and Forestry regarding species at risk potentially impacted during construction of the Project. Developed species at risk factsheets and delivered an onsite contractor training session pertaining to Eastern Foxsnake, Butler’s Gartersnake, Blanding’s Turtle, and Barn Swallow.

Enbridge Project Nexus Interconnect Pipeline, Mooretown, Ontario (Terrestrial Ecologist)
Conducted species at risk surveys for various vegetation species and coverboard surveys for Butler’s Gartersnake.

NOVA Chemicals 2020 Expansion Project, Corunna, Ontario (Terrestrial Ecologist)
ELC, amphibian and bird surveys, botanical inventory including searching for species at risk, and coverboard surveys for Butler’s Gartersnake.

NOVA Chemicals Genesis Pipeline Extension Project, Corunna, Ontario (Terrestrial Ecologist / Environmental Inspector)
Conducted suite of pre-construction and environmental surveys including ELC, amphibian and bird surveys, as well as species at risk surveys for various vegetation species, grassland birds, Snapping Turtles, and coverboard surveys for Butler’s Gartersnake. Served as on site environmental inspector during construction, responsible for snake exclusion fencing maintenance and encountered wildlife, including Butler’s Gartersnake.

NOVA Chemicals Kimball Road Pipeline Extension Project, Corunna, Ontario (Lead Terrestrial Ecologist)
Coordinated and conducted environmental surveys including vegetation, amphibian and bird surveys, including during construction inspection and compliance monitoring for Butler’s Gartersnake and Snapping Turtle.

St. Clair Pipelines Bluewater River Crossing Replacement, Corunna, Ontario (Terrestrial Ecologist / Environmental Inspector)
Conducted pre-construction environmental surveys including coverboard surveys for Butler's Gartersnake. Served as on site environmental inspector during construction, responsible for snake exclusion fencing and encountered wildlife, including Butler’s Gartersnake and Snapping Turtle.

TransCanada Pipelines Inc. Energy East Pipeline Project, Cornwall, Ontario (Terrestrial Ecologist)
Assisted with various ecological surveys, including marsh bird monitoring, species at risk crepuscular Whip-poor-will auditory surveys, amphibian surveys, ELC, and botanical inventories.

Union Gas Dawn to Dover Pipeline, Chatham-Kent, Ontario (Terrestrial Ecologist)
Conducted Eastern Foxsnake habitat assessments and amphibian surveys throughout the proposed pipeline route.

Union Gas Brantford to Kirkwall Pipeline, Region of Waterloo and City of Hamilton, Ontario (Terrestrial Ecologist)
Participated in a turtle rescue program, including Snapping Turtle, during infilling of ponds during construction.

Union Gas Dawn Compressor Station Expansion, Dresden, Ontario (Lead Terrestrial Ecologist)
Coordinated and conducted portions of the extensive 2015 field program for the proposed Dawn Compressor Station Expansion Environmental Impact Study. Tasks included coordination with First Nations groups, meeting with the local conservation authority to discuss permitting, as well as consultation with the Ministry of Natural Resources and Forestry regarding wetland evaluation, and species at risk permitting for Eastern Foxsnake, a listed plant species, and bats.

* denotes projects completed with other firms
Melissa A. Straus M.Sc.

Terrestrial Ecologist

Union Gas

Hamilton to Milton Pipeline Project,
Regional Municipality of Hamilton Wentworth and Halton Region, Ontario (Terrestrial Ecologist)

Conducted bat exit surveys at selected potential maternity roost trees

Union Gas Parkway West Natural Gas Pipeline and Compressor Station Project, Milton, Ontario
(Terrestrial Ecologist)

Registration and development of a Habitat Management Plan for Barn Swallows under the Endangered Species Act, including executing the ongoing monitoring program

Union Gas Sarnia Expansion, Corunna, Ontario
(Terrestrial Ecologist / Environmental Inspector)

Conducted pre-construction environmental surveys including bird surveys, botanical inventories including searches for plant species at risk, as well as coverboard surveys for Butler’s Gartersnake. Served as on site environmental inspector during construction, responsible for species at risk mitigation

Electrical Power Distribution

Hydro One Bruce X Milton Transmission Reinforcement, Bruce County, Ontario (Terrestrial Ecologist)

Located and protected active bird nests during land clearing to ensure client compliance with the Migratory Birds Convention Act

Multi-Unit / Family Residential

Daniels High Park Condominiums, High Park Village and Minto High Park, Toronto, Ontario
Coordinator)

Development and coordinator of a bird-building collision monitoring program for three condominium developments near High Park in Toronto.

Private Development, Schomberg, Ontario
(Terrestrial Ecologist)

Conducted surveys for Bobolink, Eastern Meadowlark, Barn Swallow, and bat species at risk in compliance with Ministry of Natural Resources and Forestry protocols. Registration and creation of a Habitat Management Plan for Bobolink and Eastern Meadowlark in compliance with the Endangered Species Act

5 Arthur Street Brownfield Development, Guelph, Ontario (Project Manager)

Project manager and lead writer of the Environmental Impact Study and Environmental Implementation Report for the multi-phase Metalworks brownfield development

Kortright East Phase 4, Guelph, Ontario (Project Manager)

Project manager and lead writer of the Environmental Implementation Report Addendum for Phase 4 of a previously approved phased subdivision in the City of Guelph

Natural Heritage Evaluations for Various Residential Development Projects, Various Sites, Southern Ontario (Terrestrial Ecologist)

Terrestrial surveys included breeding bird, species at risk, habitat assessment, ELC and wetland delineations for several residential development projects in Kitchener-Waterloo, Guelph, the Greater Toronto Area and London, Ontario

148-152 MacDonnell and 150 Wellington Condominium Developments, Guelph, Ontario
(Terrestrial Ecologist / Task Manager)

Vegetation removal surveys and lead writer of the Environmental Impact Study for both properties, including attendance at Environmental Advisory Committee meetings with the City

Huron Village, Kitchener-Waterloo, Ontario
(Terrestrial Ecologist)

Conducted turtle rescues during the draining of a stormwater management pond for dredging.

Municipal

City of Hamilton Professional and Consultant Services Roster 2011-2012 (C12-06-10); Garner/Rymal Road and Garth Street Environmental Assessment, Hamilton, Ontario
(Terrestrial Ecologist)

Served as study lead and conducted tree inventory to document existing trees and shrubs within 10 m of the existing municipal right-of-way; identified constraints with respect to species at risk within the right-of-way for the proposed expansion of Garner/Rymal Road

* denotes projects completed with other firms
Melissa A. Straus M.Sc.
Terrestrial Ecologist

Natural Sciences & Heritage Resources

Conservation Planning*, Mississauga, Ontario
(Conservation Planning Assistant)
*Created conservation plans for private landowners in the Credit Valley Watershed and inventoried vegetation using Ecological Land Classification for Southern Ontario protocol

Forestry Impacts on Regeneration Rates and Bird Communities Research*, East Lansing, Michigan
(Field Assistant)
*Performed avian point counts in the upper peninsula of Michigan, estimated White-tailed Deer densities, and completed specialized vegetation surveys to assess forest regeneration rates

Forest Bird Research*, London, Ontario (Project Biologist)
*Prepared a manuscript on the nesting success of cavity-nesting birds in woodlots subjected to silviculture, conducted a meta-analysis of edge effects on nesting success of songbirds, and created fact sheets for a landowner stewardship guide. Conducted salamander mark and recapture surveys, nest searching and monitoring, completed numerous vegetation surveys, located and reported avian and plant species at risk, collected and identified invertebrates to Order

Roadways

MTO Bridge Rehabilitation, Guelph, Ontario
(Terrestrial Ecologist)
*Conducted ELC and habitat assessments for bird species at risk

MTO Highway 40, Chatham, Ontario (Terrestrial Ecologist)
*Conducted reptile and species at risk surveys and habitat assessment

MTO Highway 24, Cambridge, Ontario (Terrestrial Ecologist)
*Conducted reptile and avian species at risk surveys and habitat assessment

Aggregates & Rock

Hillsburgh Quarry, Hillsburgh, Ontario (Terrestrial Ecologist)
*Conducted species at risk surveys for bats and Barn Swallows.

* denotes projects completed with other firms
PUBLICATIONS

Straus, M. Multiple paths after grad school: transition to for-profit companies. Western University Panelist, 2016.

Brian Miller is a Botanist and Terrestrial Ecologist whose academic background encompasses various aspects of natural resource management, with a focus on vascular plant identification and vegetation community assessment. Brian has extensive field experience conducting detailed botanical inventories of plant communities throughout southern and northern Ontario, which has provided him with an advanced knowledge of Ontario’s vascular flora. Brian has gained botanical experience outside of Ontario by participating in field programs in southern Manitoba and in the prairies of Saskatchewan. For over nine years Brian has participated in numerous surveys of species at risk and other significant plant species, as well as wetland boundary delineations.

Brian is experienced in wildlife (faunal) identification and has conducted a variety of wildlife surveys including breeding bird, amphibian call and visual reptile surveys (e.g. turtle basking surveys, snake coverboard surveys). Identification of wildlife species and their associated habitats complements Brian’s botanical expertise.

EDUCATION

CERTIFICATIONS & TRAINING

Ontario Ministry of Natural Resources / Forest Gene Conservation Association / Butternut Health Assessor Refresher Workshop, Napanee, Ontario, 2014

Certified Arborist, International Society of Arboriculture, Guelph, Ontario, 2012

Toronto and Region Conservation Authority / Carex Sedge Identification Workshop, Toronto, Ontario, 2011

Field Botanists of Ontario / Spring Hawthorn Identification Workshop, Middlesex County, Ontario, 2010

Royal Botanical Gardens / Woodland Sedge Identification Workshop, Burlington, Ontario, 2009

Certificate, Ontario Ministry of Natural Resources / Butternut Health Assessor, Hamilton, Ontario, 2009

PROJECT EXPERIENCE

Natural Sciences & Heritage Resources

Gesner Wind Farm, Chatham-Kent, Ontario (Botanist)

Performed botanical surveys and ELC mapping of natural features within the study area

Niagara Region Wind Centre, Niagara Peninsula, Ontario (Botanist)

Performed roadside ELC assessment along transmission line route

Grand Renewable Energy Park, Haldimand County, Ontario (Botanist)

Performed numerous wetland boundary delineations and mapping

Henvey Inlet Wind Project, Parry Sound District, Ontario (Botanist)

Performed detailed botanical inventory, ELC vegetation community mapping, and assisted with breeding bird and avian migration surveys for wind farm and transmission line. Conducted incidental wildlife surveys, including species at risk surveys for Blanding’s Turtle, Five-lined Skink, and Eastern Massasauga Rattlesnake

* denotes projects completed with other firms
Grand Valley 3 Wind Project, Dufferin County, Ontario (Botanist)
Performed roadside ELC assessment and wetland boundary delineations

Suncor Energy, Cedar Point Wind Project, Lambton County, Ontario (Botanist)
Performed detailed botanical inventory and ELC mapping

West London Dyke, London, Ontario (Botanist and Ecologist)
Performed multi-season botanical surveys and turtle basking surveys along the Thames River in downtown London, Ontario

Sifton Bog Vegetation Monitoring and Inventory: 2015, London, Ontario (Botanist)
Performed multi-season botanical inventory and vegetation plot monitoring in the Sifton Bog Natural Area

Union Gas Dawn Parkway System Expansion, Dawn H Compressor Station, Bentpath Line, Lambton County, Ontario (Botanist and Ecologist)
Performed botanical surveys, surveys of the rare sedge Carex lupuliformis, as well as snake cover board surveys

Pasqua to Swift Current Transmission Project, Saskatchewan (Botanist)
Assisted with Late Rare Plant Surveys in Saskatchewan prairies

Union Gas Hamilton to Milton Pipeline Project, Ontario (Botanist)
Performed botanical inventories in forest and swamp communities adjacent to the pipeline

Bradley Farms, Dover Township (Chatham-Kent), Ontario (Botanist and Ecologist)
Conducted botanical surveys and amphibian call surveys adjacent to the mouth of the Thames River and Lake St. Clair

TransCanada Pipelines Energy East Pipeline Project, Northern and Eastern Ontario (Botanist)
Performed numerous botanical inventories and ELC assessments along TransCanada pipeline at proposed pump stations from northwestern Ontario to eastern Ontario.
Performed spring and summer botanical inventories at new build section in eastern Ontario

Union Gas Lobo Compressor Station, Ivan, Ontario (Botanist)
Performed detailed botanical inventory and ELC assessment of natural features surrounding compressor station.
Performed snake cover board and breeding bird surveys in same study area

Huron Pits, Clinton, Ontario (Botanist)
Performed detailed botanical inventories of natural features within subject lands. Performed breeding bird surveys in same study area

Parkway West Union Gas Facilities Expansion, Milton, Ontario (Botanist)
Performed detailed botanical inventories of study areas

Brantford to Kirkwall Union Gas Pipeline, Ontario (Botanist)
Performed detailed botanical inventory of natural features along the pipeline

Union Gas Panhandle Replacement, Ojibway Prairie Complex, Windsor, Ontario (Botanist)
Performed detailed botanical inventory and SAR mapping along pipeline corridor

Wesdome Eagle River Gold Mine, Wawa, Ontario (Botanist)
Conducted vegetation community characterization and assessment along proposed road and pipeline

Canadian Pacific Site-specific Ecological Risk Assessment, Pointe au Baril Derailment Site, Parry Sound District, Ontario (Botanist)
Performed detailed botanical inventory and herpetofaunal SAR survey
Design-Build New Interchange, Highway 401 at Wonderland Road, London, Ontario (Arborist)
Conducted detailed tree inventory of trees within the proposed works area

Detailed Design Services for Leslie Street Realignment, York Region, Ontario (Botanist)
Performed detailed botanical inventory and ELC mapping

Hydro One Inc., Proposed Clarington Transformer Station, Durham Region, Ontario (Botanist)
Performed detailed botanical inventory and ELC mapping

Cambridge Hydro North Dumfries at Speed River, North Dumfries, Ontario (Botanist)
Performed detailed botanical inventory and ELC mapping

Walker Industries Holdings, Uppers Lane Quarry, Niagara Falls, Ontario (Botanist)
Performed fall hawthorn (Crataegus sp.) survey and botanical inventory

Sharp Road Lands EIS, County of Brant, Ontario (Botanist)
Performed detailed botanical inventories of natural features within the study area

9820 Lakeshore Road EIS, Lambton Shores, Ontario (Botanist)
Performed detailed botanical inventory of natural features within the study area

Kilworth-Black Property, Komoka, Ontario (Botanist)
Performed detailed botanical inventory of study area and adjacent natural features

Courtney Subdivision, London, Ontario (Botanist)
Performed detailed botanical inventory of natural features within and adjacent to the study area

Fairway/Lackner Lands, Kitchener, Ontario (Botanist)
Performed detailed botanical inventory, ELC mapping, and wetland boundary delineation

Marigold Homes North Dorchester Servicing Study and EIS, Middlesex County, Ontario (Botanist)
Performed detailed botanical inventory and ELC mapping

Sunningdale Golf and Country Club, Hole Relocation EIS, London, Ontario (Botanist)
Performed detailed botanical inventory, ELC mapping, and SAR surveys

Endangered Species/Species at Risk Assessments
Enbridge Pipelines Inc. Lines 10 and 11, Thorold, Ontario (Botanist)
Performed Butternut Health Assessments (species at risk) within pipeline easements

Manitoba-Minnesota Transmission Project (MMTP), Southeastern Manitoba (Botanist)
Performed rare plant surveys and detailed botanical inventories along transects throughout Manitoba section of proposed transmission line

Union Gas Easements, Windsor, Ontario (Botanist)
Conducted detailed botanical inventories and mapped numerous SAR and provincially rare species in gas line easements

Shell Canada Proposed Heavy Oil Refinery Expansion Project*, Lambton County, Ontario (Botanist)
Performed ELC surveys and GPS mapping of provincially and regionally significant species and vegetation communities

Ferromin Iron Magnetite Quarry, Ompah, Ontario (Ecologist)
Conducted a survey for the presence of Pale-bellied Frost Lichen, a provincially endangered lichen species

CBM Olszowka Property Pit Application, Township of Burford, Ontario (Botanist/Ecologist)
Performed detailed botanical inventories of natural features within the study area. Conducted snake cover board, basking Blandings Turtle, and breeding bird surveys

* denotes projects completed with other firms
Windsor Essex Parkway*, Windsor, Ontario (Botanist)
Conducted detailed botanical inventories of SAR-rich remnant prairie sites. Numerous SAR were flagged and mapped using handheld GPS

Highway 407 Extension*, Durham Region (Botanist)
Conducted regionally rare /significant plant species surveys and GPS mapping along new Highway route

CPA Subwatershed Study*, Township of Centre Wellington, Ontario (Botanist)
Conducted comprehensive biological inventories of vascular flora, vegetation communities, breeding birds, snakes and calling anurans as part of Phase 1 (Existing Conditions) of the subwatershed study. All species of regional and provincial significance were mapped

Mill Pond Park Biological Inventory*, Town of Richmond Hill, Ontario (Botanist)

Block 11 Wetland Vegetation Monitoring*, Vaughan, Ontario (Botanist)
Set-up and conducted wetland vegetation monitoring in two wetlands adjacent to a proposed subdivision

* denotes projects completed with other firms
PUBLICATIONS

Anna Corrigan is a member of Stantec’s terrestrial ecology team, with experience conducting field work and providing data management and analyses services for a variety of development projects. She has been involved primarily with post-construction mortality monitoring projects for renewable energy wind projects during the past three years, and has developed proficiency at running these specialized field programs. Anna is certified in Ecological Land Classification (ELC).

Anna recently completed her undergraduate degree at McMaster University with combined honours in Biology and Environmental Science. During her studies, Anna acquired field work experience working along the Amazon River and in various parts of Southern Ontario. These experiences have enhanced her abilities in species identification and the completion of wildlife surveys.

EDUCATION

B.Sc. Honours Biology and Environmental Sciences, McMaster University, Hamilton, Ontario, 2014

CERTIFICATIONS & TRAINING

Certificate, Ontario Ministry of Natural Resources and Forestry / Ecological Land Classification, Kemptville, Ontario, 2015

Certificate, Canadian Red Cross / Standard First Aid Level C, Pickering, Ontario, 2013

AWARDS

2014 McMaster University Dean’s Honour List

PROJECT EXPERIENCE

Renewable Energy, Wind

K2 Wind Farm, Goderich, Ontario (Assistant Project Coordinator/ Ecologist)

Assisted with post-construction monitoring and field work to determine mortality rates of birds and bats. Lead the Amphibian monitoring portion of the project. Managed field staff schedules, conducted data management and analyses, and reporting.

Grand Valley Wind Farm Phase I and Phase II, Grand Valley, Ontario (Ecologist)

Conducted post-construction monitoring field work to determine mortality rates of birds and bats. Responsible for scheduling, data entry and analyses, and reporting

Gosfield Wind Energy Project, Cottam, Ontario (Ecologist)

Conducted post-construction monitoring field work to determine mortality rates of birds and bats. Responsible for scheduling, data entry and analyses, and reporting

Comber Wind Power Project, Comber, Ontario (Ecologist)

Responsible for scheduling, conducted post-construction monitoring field work, performed data collection, management and analyses, and reporting

Cruickshank Wind Farm, Kincardine, Ontario (Ecologist)

Managed field staff schedules, conducted data management and analyses, and reporting

Ontario Wind Power Project LP, Kincardine, Ontario (Ecologist)

Managed field staff schedules, conducted data management and analyses, and reporting

Port Dover and Nanticoke Wind Project, Nanticoke, Ontario (Ecologist)

Assisting with field schedules coordination, conducted data management and analyses, and reporting.

Adelaide Wind Power Facility, Strathroy, Ontario (Ecologist)

Assisted with post-construction monitoring and field work to determine mortality rates of birds and bats. Managed field staff schedules, conducted data management and analyses, and reporting

* denotes projects completed with other firms
Anna L. Corrigan B.Sc. (Hons)
Ecologist

Renewable Energy, Solar

Pendleton Solar Energy Centre, Township of Alfred and Plantagenet, ON (Ecologist)
Author of the Natural Heritage Assessment Report.

Barlow Solar Energy Centre Project, South Stormont, Ontario (Ecologist)
Author of the Natural Heritage Assessment Report.

Oil & Gas

Dawn to Dover Pipeline, Project expanded from Dawn to Dover, Ontario (Ecologist)
Conducted Eastern Foxsnake habitat assessment surveys and bat maternity roost assessment surveys for reptile and bat species at risk, and other wildlife surveys that assessed habitat of species at risk.

Dawn Parkway System Expansion, Dawn H Compressor Station, Dresden, Ontario (Ecologist)
Conducted snake coverboard surveys and bat maternity roost assessment surveys for reptile and bat species at risk, assisted with delineation surveys, and other wildlife surveys. Wrote several technical field memos regarding amphibian, breeding bird, snake coverboard and bat surveys.

Hamilton-Milton Pipeline, Hamilton and Milton, Ontario (Ecologist)
Provided in-field support for snake coverboard surveys for species at risk, amphibian call surveys, and conducted vegetation surveys.

Burlington-Oakville Pipeline, Burlington and Oakville, Ontario (Ecologist)
Provided in-field support for snake coverboard surveys for species at risk and amphibian call surveys.

TransCanada Energy East Pipeline Project, Ontario and Quebec (Ecologist)
Performed tracking of health and safety training for Quebec and Ontario First Nation team members, and attended weekly team meetings pertaining to Project progress. Served as standby support to conduct Traditional Ecological Knowledge studies.

Enbridge Gas Distribution Inc. GTA Project, Greater Toronto Area Pipeline, Ontario (Ecologist)
Participated in 2015 and 2016 field season bird nest sweeps and delineation of setbacks during construction of the pipeline, which included work in areas of construction activity and Project-specific health and safety requirements. Supported terrestrial ecology staff resource scheduling and data management.

Community Development

Ballentrae, Whitchurch-Stouffville, Ontario (Ecologist)
Lead the amphibian call surveys for the field work portion of this project.

* denotes projects completed with other firms
PUBLICATIONS